Linear preserver of n × 1 Ferrers vectors
Let A = [ a ij ] m × n be an m × n matrix of zeros and ones. The matrix A is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero (1,1)-entry. We characterize all linear maps perserving the set of n × 1 Ferrers vectors over the binary Boolean semiring...
Gespeichert in:
Veröffentlicht in: | Czechoslovak mathematical journal 2023, Vol.73 (4), p.1189-1200 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
= [
a
ij
]
m
×
n
be an
m
×
n
matrix of zeros and ones. The matrix
A
is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero (1,1)-entry. We characterize all linear maps perserving the set of
n
× 1 Ferrers vectors over the binary Boolean semiring and over the Boolean ring
ℤ
2
. Also, we have achieved the number of these linear maps in each case. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2023.0440-22 |