Linear preserver of n × 1 Ferrers vectors

Let A = [ a ij ] m × n be an m × n matrix of zeros and ones. The matrix A is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero (1,1)-entry. We characterize all linear maps perserving the set of n × 1 Ferrers vectors over the binary Boolean semiring...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak mathematical journal 2023, Vol.73 (4), p.1189-1200
Hauptverfasser: Fazlpar, Leila, Armandnejad, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A = [ a ij ] m × n be an m × n matrix of zeros and ones. The matrix A is said to be a Ferrers matrix if it has decreasing row sums and it is row and column dense with nonzero (1,1)-entry. We characterize all linear maps perserving the set of n × 1 Ferrers vectors over the binary Boolean semiring and over the Boolean ring ℤ 2 . Also, we have achieved the number of these linear maps in each case.
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2023.0440-22