Morphisms of Cuntz-Pimsner algebras from completely positive maps

We introduce positive correspondences as right C*-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the C*-correspondence (Enchilada) category as a "retract". Kasparov's KSGNS construction provides a semi-functor f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Brix, Kevin Aguyar, Mundey, Alexander, Rennie, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Brix, Kevin Aguyar
Mundey, Alexander
Rennie, Adam
description We introduce positive correspondences as right C*-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the C*-correspondence (Enchilada) category as a "retract". Kasparov's KSGNS construction provides a semi-functor from this semi-category onto the C*-correspondence category. The need for left actions by completely positive maps appears naturally when we consider morphisms between Cuntz-Pimsner algebras, and we describe classes of examples arising from projections on C*-correspondences and Fock spaces, as well as examples from conjugation by bi-Hilbertian bimodules of finite index.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2895042759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2895042759</sourcerecordid><originalsourceid>FETCH-proquest_journals_28950427593</originalsourceid><addsrcrecordid>eNqNyrEKwjAUQNEgCBbtPwScC_Glse0oRXERHNwlSqopSV_MSwX9eh38AKc7nDthGUi5KuoSYMZyol4IAesKlJIZ2xwwhrslTxw73o5DehdH62kwkWt3M5eoiXcRPb-iD84k4148INlkn4Z7HWjBpp12ZPJf52y5257afREiPkZD6dzjGIcvnaFulCihUo387_oAv9k6GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895042759</pqid></control><display><type>article</type><title>Morphisms of Cuntz-Pimsner algebras from completely positive maps</title><source>Free E- Journals</source><creator>Brix, Kevin Aguyar ; Mundey, Alexander ; Rennie, Adam</creator><creatorcontrib>Brix, Kevin Aguyar ; Mundey, Alexander ; Rennie, Adam</creatorcontrib><description>We introduce positive correspondences as right C*-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the C*-correspondence (Enchilada) category as a "retract". Kasparov's KSGNS construction provides a semi-functor from this semi-category onto the C*-correspondence category. The need for left actions by completely positive maps appears naturally when we consider morphisms between Cuntz-Pimsner algebras, and we describe classes of examples arising from projections on C*-correspondences and Fock spaces, as well as examples from conjugation by bi-Hilbertian bimodules of finite index.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Conjugation</subject><ispartof>arXiv.org, 2024-07</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>778,782</link.rule.ids></links><search><creatorcontrib>Brix, Kevin Aguyar</creatorcontrib><creatorcontrib>Mundey, Alexander</creatorcontrib><creatorcontrib>Rennie, Adam</creatorcontrib><title>Morphisms of Cuntz-Pimsner algebras from completely positive maps</title><title>arXiv.org</title><description>We introduce positive correspondences as right C*-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the C*-correspondence (Enchilada) category as a "retract". Kasparov's KSGNS construction provides a semi-functor from this semi-category onto the C*-correspondence category. The need for left actions by completely positive maps appears naturally when we consider morphisms between Cuntz-Pimsner algebras, and we describe classes of examples arising from projections on C*-correspondences and Fock spaces, as well as examples from conjugation by bi-Hilbertian bimodules of finite index.</description><subject>Conjugation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAUQNEgCBbtPwScC_Glse0oRXERHNwlSqopSV_MSwX9eh38AKc7nDthGUi5KuoSYMZyol4IAesKlJIZ2xwwhrslTxw73o5DehdH62kwkWt3M5eoiXcRPb-iD84k4148INlkn4Z7HWjBpp12ZPJf52y5257afREiPkZD6dzjGIcvnaFulCihUo387_oAv9k6GQ</recordid><startdate>20240704</startdate><enddate>20240704</enddate><creator>Brix, Kevin Aguyar</creator><creator>Mundey, Alexander</creator><creator>Rennie, Adam</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240704</creationdate><title>Morphisms of Cuntz-Pimsner algebras from completely positive maps</title><author>Brix, Kevin Aguyar ; Mundey, Alexander ; Rennie, Adam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28950427593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Conjugation</topic><toplevel>online_resources</toplevel><creatorcontrib>Brix, Kevin Aguyar</creatorcontrib><creatorcontrib>Mundey, Alexander</creatorcontrib><creatorcontrib>Rennie, Adam</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brix, Kevin Aguyar</au><au>Mundey, Alexander</au><au>Rennie, Adam</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Morphisms of Cuntz-Pimsner algebras from completely positive maps</atitle><jtitle>arXiv.org</jtitle><date>2024-07-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We introduce positive correspondences as right C*-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the C*-correspondence (Enchilada) category as a "retract". Kasparov's KSGNS construction provides a semi-functor from this semi-category onto the C*-correspondence category. The need for left actions by completely positive maps appears naturally when we consider morphisms between Cuntz-Pimsner algebras, and we describe classes of examples arising from projections on C*-correspondences and Fock spaces, as well as examples from conjugation by bi-Hilbertian bimodules of finite index.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2895042759
source Free E- Journals
subjects Conjugation
title Morphisms of Cuntz-Pimsner algebras from completely positive maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A26%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Morphisms%20of%20Cuntz-Pimsner%20algebras%20from%20completely%20positive%20maps&rft.jtitle=arXiv.org&rft.au=Brix,%20Kevin%20Aguyar&rft.date=2024-07-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2895042759%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2895042759&rft_id=info:pmid/&rfr_iscdi=true