Morphisms of Cuntz-Pimsner algebras from completely positive maps

We introduce positive correspondences as right C*-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the C*-correspondence (Enchilada) category as a "retract". Kasparov's KSGNS construction provides a semi-functor f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-07
Hauptverfasser: Brix, Kevin Aguyar, Mundey, Alexander, Rennie, Adam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce positive correspondences as right C*-modules with left actions given by completely positive maps. Positive correspondences form a semi-category that contains the C*-correspondence (Enchilada) category as a "retract". Kasparov's KSGNS construction provides a semi-functor from this semi-category onto the C*-correspondence category. The need for left actions by completely positive maps appears naturally when we consider morphisms between Cuntz-Pimsner algebras, and we describe classes of examples arising from projections on C*-correspondences and Fock spaces, as well as examples from conjugation by bi-Hilbertian bimodules of finite index.
ISSN:2331-8422