A Sound Explanation for Motor Cortex Engagement during Action Word Comprehension

Comprehending action words often engages similar brain regions to those involved in perceiving and executing actions. This finding has been interpreted as support for grounding of conceptual processing in motor representations or that conceptual processing involves motor simulation. However, such de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cognitive neuroscience 2021-01, Vol.33 (1), p.129-145
Hauptverfasser: de Zubicaray, Greig I., McMahon, Katie L., Arciuli, Joanne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Comprehending action words often engages similar brain regions to those involved in perceiving and executing actions. This finding has been interpreted as support for grounding of conceptual processing in motor representations or that conceptual processing involves motor simulation. However, such demonstrations cannot confirm the nature of the mechanism(s) responsible, as word comprehension involves multiple processes (e.g., lexical, semantic, morphological, phonological). In this study, we tested whether this motor cortex engagement instead reflects processing of statistical regularities in sublexical phonological features. Specifically, we measured brain activity in healthy participants using functional magnetic resonance imaging while they performed an auditory lexical decision paradigm involving monosyllabic action words associated with specific effectors (face, arm, and leg). We show that nonwords matched to the action words in terms of their elicit common patterns of activation. In addition, we show that a measure of the action words' , the extent to which a word's phonology is typical of other words in the grammatical category to which it belongs (i.e., more or less verb-like), is responsible for their activating a significant portion of primary and premotor cortices. These results indicate motor cortex engagement during action word comprehension is more likely to reflect processing of statistical regularities in sublexical phonological features than conceptual processing. We discuss the implications for current neurobiological models of language, all of which implicitly or explicitly assume that the relationship between the sound of a word and its meaning is arbitrary.
ISSN:0898-929X
1530-8898
DOI:10.1162/jocn_a_01640