On Mean Values of Solutions to Differential Equations

The methods developed in recent decades for identifying and obtaining mean values formulas for solutions of differential equations are described. The results obtained using these methods are presented. Mean values formulas for the Laplace–Beltrami operator in non-Euclidean spaces, for the wave equat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2023-08, Vol.44 (8), p.3497-3516
Hauptverfasser: Polovinkina, M. V., Polovinkin, I. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The methods developed in recent decades for identifying and obtaining mean values formulas for solutions of differential equations are described. The results obtained using these methods are presented. Mean values formulas for the Laplace–Beltrami operator in non-Euclidean spaces, for the wave equations in Euclidean space, on a sphere, in Lobachevskii space, two-point mean values formulas for elliptic equations are presented. The method of accompanying distributions is described, which makes it possible to obtain new mean values formulas. The mean value formula for a hyperbolic operator factorizing into linear factors of the first order is presented. A consequence of this formula is the ‘‘inclusions-exclusions’’ formula for polynomials.
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080223080462