Geodynamics of a Breakup of Western Part of the Karelian Craton: Data on 2.1 Ga Mafic Magmatism

Mafic intraplate magmatism is the main source of information about the geodynamics of processes that lead to the breakup of continental blocks. The article discusses geodynamics of the breakup of the Archean supercraton Superia in the Middle Paleoproterozoic. The discussion is based on data on 2.1 G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Petrology 2023-12, Vol.31 (6), p.581-603
Hauptverfasser: Samsonov, A. V., Stepanova, A. V., Salnikova, E. B., Larionova, Yu. O., Larionov, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mafic intraplate magmatism is the main source of information about the geodynamics of processes that lead to the breakup of continental blocks. The article discusses geodynamics of the breakup of the Archean supercraton Superia in the Middle Paleoproterozoic. The discussion is based on data on 2.1 Ga magmatism in the Karelian Craton, where mafic igneous rocks of this age are represented by tholeiites of two geochemical types: depleted and enriched. Geochemically close to N-MORB, depleted tholeiites were studied in the Northern Ladoga Region where they form dike swarms at ca. 2111 ± 6 Ma (U-Pb, SIMS, zircon) in the Hatunoiya locality, and pillow lavas and sills in the Lake Maloe Jänisjärvi locality. Enriched tholeiites were studied in the Lake Tulos locality where they form a large swarm of doleritic dikes of age 2118 ± 5 Ma (U-Pb, ID-TIMS, baddeleyite). The results of these studies provide deeper insight into 2.1 Ga mafic magmatism. Depleted tholeiites with N-MORB geochemistry have a wide spatial distribution in the Karelian Craton and could be formed via decompression melting of a depleted asthenospheric mantle, raising melts along the extension zones, and minimal contamination by the Archean crust. According to modelling results, enriched tholeiitic melts probably occurred due to differentiation and crustal contamination of rising depleted tholeiitic melts through more rigid Archean crustal blocks. Data on ca. 2.1 Ga mafic magmatism in the Karelian craton are difficult to explain within the mantle plume rise model, but are consistent with the model of lithosphere extension due to a retreat of a subduction zone in the northeastern margin of the craton, in the Lapland-Kola Ocean at 2.0–2.2 Ga. The intensive thinning and rupture of the Archean continental lithosphere and opening of an oceanic basin at the western margin of the Karelian craton were probably controlled by the suture zone of the junction of Neoarchean and Paleoarchean crustal blocks, traced in the western part of the Karelian craton. An additional factor that led to the ca. 2.1 Ga lithospheric breakup could be a rise of a deep-seated mantle plume in the Hearne craton, neighboring to the Karelian craton in the Archean Superia supercraton.
ISSN:0869-5911
1556-2085
DOI:10.1134/S0869591123060085