Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo
This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate Genera...
Gespeichert in:
Veröffentlicht in: | Global business review 2023-12, Vol.24 (6), p.1145-1179 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1179 |
---|---|
container_issue | 6 |
container_start_page | 1145 |
container_title | Global business review |
container_volume | 24 |
creator | Madhavan, Meena Ali Sharafuddin, Mohammed Piboonrungroj, Pairach Yang, Ching-Chiao |
description | This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized. |
doi_str_mv | 10.1177/0972150920923316 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894331946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0972150920923316</sage_id><sourcerecordid>2894331946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e672ed9bb6b130fe2676b7dd3f1575a37480775f61d27c7aaac535c1398ee7fe3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbvHhc8R_cj2Um8lWBVKChYTx7CJplNU9rdupse-t-bNEJBEAZmePN7M_AIueXsnnOAB5aB4AnLRF9ScnVGJr0kI6ZUfH6cRTTsL8lVCGvGhEwhnZCvj5XzXdSh39K581jp0LW2ocZ5Omv9prVIX229D50_PNLlCmmuA1JnBrXVdoDouw4BbYOealsflVz7xl2TC6M3AW9--5R8zp-W-Uu0eHt-zWeLqJJKdREqEFhnZalKLplBoUCVUNfS8AQSLSFOGUBiFK8FVKC1rhKZVFxmKSIYlFNyN97defe9x9AVa7f3tn9ZiDSL-zSyWPUUG6nKuxA8mmLn2632h4KzYoiw-Bthb6GjBStn23AypMBVpng6INGIBN3g6e-_J38A-FR5iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894331946</pqid></control><display><type>article</type><title>Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo</title><source>PAIS Index</source><source>SAGE Complete A-Z List</source><creator>Madhavan, Meena ; Ali Sharafuddin, Mohammed ; Piboonrungroj, Pairach ; Yang, Ching-Chiao</creator><creatorcontrib>Madhavan, Meena ; Ali Sharafuddin, Mohammed ; Piboonrungroj, Pairach ; Yang, Ching-Chiao</creatorcontrib><description>This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.</description><identifier>ISSN: 0972-1509</identifier><identifier>EISSN: 0973-0664</identifier><identifier>DOI: 10.1177/0972150920923316</identifier><language>eng</language><publisher>New Delhi, India: SAGE Publications</publisher><subject>Air travel ; Aviation ; Forecasting ; Short term</subject><ispartof>Global business review, 2023-12, Vol.24 (6), p.1145-1179</ispartof><rights>2020 IMI</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e672ed9bb6b130fe2676b7dd3f1575a37480775f61d27c7aaac535c1398ee7fe3</citedby><cites>FETCH-LOGICAL-c366t-e672ed9bb6b130fe2676b7dd3f1575a37480775f61d27c7aaac535c1398ee7fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0972150920923316$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0972150920923316$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27866,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Madhavan, Meena</creatorcontrib><creatorcontrib>Ali Sharafuddin, Mohammed</creatorcontrib><creatorcontrib>Piboonrungroj, Pairach</creatorcontrib><creatorcontrib>Yang, Ching-Chiao</creatorcontrib><title>Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo</title><title>Global business review</title><description>This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.</description><subject>Air travel</subject><subject>Aviation</subject><subject>Forecasting</subject><subject>Short term</subject><issn>0972-1509</issn><issn>0973-0664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp1kM1Lw0AQxRdRsFbvHhc8R_cj2Um8lWBVKChYTx7CJplNU9rdupse-t-bNEJBEAZmePN7M_AIueXsnnOAB5aB4AnLRF9ScnVGJr0kI6ZUfH6cRTTsL8lVCGvGhEwhnZCvj5XzXdSh39K581jp0LW2ocZ5Omv9prVIX229D50_PNLlCmmuA1JnBrXVdoDouw4BbYOealsflVz7xl2TC6M3AW9--5R8zp-W-Uu0eHt-zWeLqJJKdREqEFhnZalKLplBoUCVUNfS8AQSLSFOGUBiFK8FVKC1rhKZVFxmKSIYlFNyN97defe9x9AVa7f3tn9ZiDSL-zSyWPUUG6nKuxA8mmLn2632h4KzYoiw-Bthb6GjBStn23AypMBVpng6INGIBN3g6e-_J38A-FR5iQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Madhavan, Meena</creator><creator>Ali Sharafuddin, Mohammed</creator><creator>Piboonrungroj, Pairach</creator><creator>Yang, Ching-Chiao</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>20231201</creationdate><title>Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo</title><author>Madhavan, Meena ; Ali Sharafuddin, Mohammed ; Piboonrungroj, Pairach ; Yang, Ching-Chiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e672ed9bb6b130fe2676b7dd3f1575a37480775f61d27c7aaac535c1398ee7fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air travel</topic><topic>Aviation</topic><topic>Forecasting</topic><topic>Short term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhavan, Meena</creatorcontrib><creatorcontrib>Ali Sharafuddin, Mohammed</creatorcontrib><creatorcontrib>Piboonrungroj, Pairach</creatorcontrib><creatorcontrib>Yang, Ching-Chiao</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Global business review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhavan, Meena</au><au>Ali Sharafuddin, Mohammed</au><au>Piboonrungroj, Pairach</au><au>Yang, Ching-Chiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo</atitle><jtitle>Global business review</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>1145</spage><epage>1179</epage><pages>1145-1179</pages><issn>0972-1509</issn><eissn>0973-0664</eissn><abstract>This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.</abstract><cop>New Delhi, India</cop><pub>SAGE Publications</pub><doi>10.1177/0972150920923316</doi><tpages>35</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0972-1509 |
ispartof | Global business review, 2023-12, Vol.24 (6), p.1145-1179 |
issn | 0972-1509 0973-0664 |
language | eng |
recordid | cdi_proquest_journals_2894331946 |
source | PAIS Index; SAGE Complete A-Z List |
subjects | Air travel Aviation Forecasting Short term |
title | Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20Forecasting%20for%20Airline%20Industry:%20The%20Case%20of%20Indian%20Air%20Passenger%20and%20Air%20Cargo&rft.jtitle=Global%20business%20review&rft.au=Madhavan,%20Meena&rft.date=2023-12-01&rft.volume=24&rft.issue=6&rft.spage=1145&rft.epage=1179&rft.pages=1145-1179&rft.issn=0972-1509&rft.eissn=0973-0664&rft_id=info:doi/10.1177/0972150920923316&rft_dat=%3Cproquest_cross%3E2894331946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894331946&rft_id=info:pmid/&rft_sage_id=10.1177_0972150920923316&rfr_iscdi=true |