Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo

This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate Genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global business review 2023-12, Vol.24 (6), p.1145-1179
Hauptverfasser: Madhavan, Meena, Ali Sharafuddin, Mohammed, Piboonrungroj, Pairach, Yang, Ching-Chiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1179
container_issue 6
container_start_page 1145
container_title Global business review
container_volume 24
creator Madhavan, Meena
Ali Sharafuddin, Mohammed
Piboonrungroj, Pairach
Yang, Ching-Chiao
description This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.
doi_str_mv 10.1177/0972150920923316
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2894331946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0972150920923316</sage_id><sourcerecordid>2894331946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-e672ed9bb6b130fe2676b7dd3f1575a37480775f61d27c7aaac535c1398ee7fe3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbvHhc8R_cj2Um8lWBVKChYTx7CJplNU9rdupse-t-bNEJBEAZmePN7M_AIueXsnnOAB5aB4AnLRF9ScnVGJr0kI6ZUfH6cRTTsL8lVCGvGhEwhnZCvj5XzXdSh39K581jp0LW2ocZ5Omv9prVIX229D50_PNLlCmmuA1JnBrXVdoDouw4BbYOealsflVz7xl2TC6M3AW9--5R8zp-W-Uu0eHt-zWeLqJJKdREqEFhnZalKLplBoUCVUNfS8AQSLSFOGUBiFK8FVKC1rhKZVFxmKSIYlFNyN97defe9x9AVa7f3tn9ZiDSL-zSyWPUUG6nKuxA8mmLn2632h4KzYoiw-Bthb6GjBStn23AypMBVpng6INGIBN3g6e-_J38A-FR5iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2894331946</pqid></control><display><type>article</type><title>Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo</title><source>PAIS Index</source><source>SAGE Complete A-Z List</source><creator>Madhavan, Meena ; Ali Sharafuddin, Mohammed ; Piboonrungroj, Pairach ; Yang, Ching-Chiao</creator><creatorcontrib>Madhavan, Meena ; Ali Sharafuddin, Mohammed ; Piboonrungroj, Pairach ; Yang, Ching-Chiao</creatorcontrib><description>This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.</description><identifier>ISSN: 0972-1509</identifier><identifier>EISSN: 0973-0664</identifier><identifier>DOI: 10.1177/0972150920923316</identifier><language>eng</language><publisher>New Delhi, India: SAGE Publications</publisher><subject>Air travel ; Aviation ; Forecasting ; Short term</subject><ispartof>Global business review, 2023-12, Vol.24 (6), p.1145-1179</ispartof><rights>2020 IMI</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-e672ed9bb6b130fe2676b7dd3f1575a37480775f61d27c7aaac535c1398ee7fe3</citedby><cites>FETCH-LOGICAL-c366t-e672ed9bb6b130fe2676b7dd3f1575a37480775f61d27c7aaac535c1398ee7fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0972150920923316$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0972150920923316$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21819,27866,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Madhavan, Meena</creatorcontrib><creatorcontrib>Ali Sharafuddin, Mohammed</creatorcontrib><creatorcontrib>Piboonrungroj, Pairach</creatorcontrib><creatorcontrib>Yang, Ching-Chiao</creatorcontrib><title>Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo</title><title>Global business review</title><description>This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.</description><subject>Air travel</subject><subject>Aviation</subject><subject>Forecasting</subject><subject>Short term</subject><issn>0972-1509</issn><issn>0973-0664</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp1kM1Lw0AQxRdRsFbvHhc8R_cj2Um8lWBVKChYTx7CJplNU9rdupse-t-bNEJBEAZmePN7M_AIueXsnnOAB5aB4AnLRF9ScnVGJr0kI6ZUfH6cRTTsL8lVCGvGhEwhnZCvj5XzXdSh39K581jp0LW2ocZ5Omv9prVIX229D50_PNLlCmmuA1JnBrXVdoDouw4BbYOealsflVz7xl2TC6M3AW9--5R8zp-W-Uu0eHt-zWeLqJJKdREqEFhnZalKLplBoUCVUNfS8AQSLSFOGUBiFK8FVKC1rhKZVFxmKSIYlFNyN97defe9x9AVa7f3tn9ZiDSL-zSyWPUUG6nKuxA8mmLn2632h4KzYoiw-Bthb6GjBStn23AypMBVpng6INGIBN3g6e-_J38A-FR5iQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Madhavan, Meena</creator><creator>Ali Sharafuddin, Mohammed</creator><creator>Piboonrungroj, Pairach</creator><creator>Yang, Ching-Chiao</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>20231201</creationdate><title>Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo</title><author>Madhavan, Meena ; Ali Sharafuddin, Mohammed ; Piboonrungroj, Pairach ; Yang, Ching-Chiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-e672ed9bb6b130fe2676b7dd3f1575a37480775f61d27c7aaac535c1398ee7fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Air travel</topic><topic>Aviation</topic><topic>Forecasting</topic><topic>Short term</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Madhavan, Meena</creatorcontrib><creatorcontrib>Ali Sharafuddin, Mohammed</creatorcontrib><creatorcontrib>Piboonrungroj, Pairach</creatorcontrib><creatorcontrib>Yang, Ching-Chiao</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Global business review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Madhavan, Meena</au><au>Ali Sharafuddin, Mohammed</au><au>Piboonrungroj, Pairach</au><au>Yang, Ching-Chiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo</atitle><jtitle>Global business review</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>1145</spage><epage>1179</epage><pages>1145-1179</pages><issn>0972-1509</issn><eissn>0973-0664</eissn><abstract>This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.</abstract><cop>New Delhi, India</cop><pub>SAGE Publications</pub><doi>10.1177/0972150920923316</doi><tpages>35</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0972-1509
ispartof Global business review, 2023-12, Vol.24 (6), p.1145-1179
issn 0972-1509
0973-0664
language eng
recordid cdi_proquest_journals_2894331946
source PAIS Index; SAGE Complete A-Z List
subjects Air travel
Aviation
Forecasting
Short term
title Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T19%3A47%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-term%20Forecasting%20for%20Airline%20Industry:%20The%20Case%20of%20Indian%20Air%20Passenger%20and%20Air%20Cargo&rft.jtitle=Global%20business%20review&rft.au=Madhavan,%20Meena&rft.date=2023-12-01&rft.volume=24&rft.issue=6&rft.spage=1145&rft.epage=1179&rft.pages=1145-1179&rft.issn=0972-1509&rft.eissn=0973-0664&rft_id=info:doi/10.1177/0972150920923316&rft_dat=%3Cproquest_cross%3E2894331946%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2894331946&rft_id=info:pmid/&rft_sage_id=10.1177_0972150920923316&rfr_iscdi=true