Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo

This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate Genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global business review 2023-12, Vol.24 (6), p.1145-1179
Hauptverfasser: Madhavan, Meena, Ali Sharafuddin, Mohammed, Piboonrungroj, Pairach, Yang, Ching-Chiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to forecast air passenger and cargo demand of the Indian aviation industry using the autoregressive integrated moving average (ARIMA) and Bayesian structural time series (BSTS) models. We utilized 10 years’ (2009–2018) air passenger and cargo data obtained from the Directorate General of Civil Aviation (DGCA-India) website. The study assessed both ARIMA and BSTS models’ ability to incorporate uncertainty under dynamic settings. Findings inferred that, along with ARIMA, BSTS is also suitable for short-term forecasting of all four (international passenger, domestic passenger, international air cargo, and domestic air cargo) commercial aviation sectors. Recommendations and directions for further research in medium-term and long-term forecasting of the Indian airline industry were also summarized.
ISSN:0972-1509
0973-0664
DOI:10.1177/0972150920923316