An Operator-Valued Haagerup Inequality for Hyperbolic Groups

We study an operator-valued generalization of the Haagerup inequality for Gromov hyperbolic groups. In 1978, U. Haagerup showed that if \(f\) is a function on the free group \(\mathbb{F}_r\) which is supported on the \(k\)-sphere \(S_k=\{x\in \mathbb{F}_r:\ell(x)=k\}\), then the operator norm of its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Toyota, Ryo, Yang, Zhiyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study an operator-valued generalization of the Haagerup inequality for Gromov hyperbolic groups. In 1978, U. Haagerup showed that if \(f\) is a function on the free group \(\mathbb{F}_r\) which is supported on the \(k\)-sphere \(S_k=\{x\in \mathbb{F}_r:\ell(x)=k\}\), then the operator norm of its left regular representation is bounded by \((k+1)\|f\|_2\). An operator-valued generalization of it was started by U. Haagerup and G. Pisier. One of the most complete form was given by A. Buchholz, where the \(\ell^2\)-norm in the original inequality was replaced by \(k+1\) different matrix norms associated to word decompositions (this type of inequality is also called Khintchine-type inequality). We provide a generalization of Buchholz's result for hyperbolic groups.
ISSN:2331-8422