Machine-learning abstractions for component-based self-optimizing systems

This paper features an approach that combines machine-learning abstractions with a component model. We target modern self-optimizing systems and therefore integrate the machine-learning abstractions into our ensemble-based component model DEECo. We further endow the DEECo component model with abstra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on software tools for technology transfer 2023-12, Vol.25 (5-6), p.717-731
Hauptverfasser: Töpfer, Michal, Abdullah, Milad, Bureš, Tomáš, Hnětynka, Petr, Kruliš, Martin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper features an approach that combines machine-learning abstractions with a component model. We target modern self-optimizing systems and therefore integrate the machine-learning abstractions into our ensemble-based component model DEECo. We further endow the DEECo component model with abstractions for specifying self-optimization heuristics, which address coordination among multiple components. We demonstrate these abstractions in the context of an Industry 4.0 use case. We argue that incorporating machine learning and optimization heuristics is the key feature for modern smart systems, which learn over time and optimize their behavior at runtime to deal with uncertainty in their environment.
ISSN:1433-2779
1433-2787
DOI:10.1007/s10009-023-00726-x