Evaluating the Practicality of Quantum Optimization Algorithms for Prototypical Industrial Applications

The optimization of the power consumption of antenna networks is a problem with a potential impact in the field of telecommunications. In this work, we investigate the application of the quantum approximate optimization algorithm (QAOA) and the quantum adiabatic algorithm (QAA), to the solution of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-02
Hauptverfasser: Vandelli, Matteo, Lignarolo, Alessandra, Cavazzoni, Carlo, Dragoni, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The optimization of the power consumption of antenna networks is a problem with a potential impact in the field of telecommunications. In this work, we investigate the application of the quantum approximate optimization algorithm (QAOA) and the quantum adiabatic algorithm (QAA), to the solution of a prototypical model in this field. We use statevector emulation in a high-performance computing environment to compare the performance of these two algorithms in terms of solution quality, using selected evaluation metrics. We estimate the circuit depth scaling with the problem size while maintaining a certain level of solution quality, and we extend our analysis up to 31 qubits, which is rarely addressed in the literature. Our calculations show that as the problem size increases, the probability of measuring the exact solution decreases exponentially for both algorithms. This issue is particularly severe when we include constraints in the problem, resulting in full connectivity between the sites. Nonetheless, we observe that the cumulative probability of measuring solutions close to the optimal one remains high also for the largest instances considered in this work. Our findings keep the way open to the application of these algorithms, or variants thereof, to generate suboptimal solutions at scales relevant to industrial use-cases.
ISSN:2331-8422