Deep Neural Network Regression‐Assisted Pressure Sensor for Decoupling Thermal Variations at Different Operating Temperatures

Pressure Sensors The efficient measurement of pressure using a sensor under various environmental conditions, such as temperature and humidity, remains challenging due to electrical distortions. In article number 2300186, Joohyung Bang, Keuntae Baek, Jaeyoung Lim, Yongha Han, and Hongyun So present...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced intelligent systems 2023-11, Vol.5 (11), p.n/a
Hauptverfasser: Bang, Joohyung, Baek, Keuntae, Lim, Jaeyoung, Han, Yongha, So, Hongyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pressure Sensors The efficient measurement of pressure using a sensor under various environmental conditions, such as temperature and humidity, remains challenging due to electrical distortions. In article number 2300186, Joohyung Bang, Keuntae Baek, Jaeyoung Lim, Yongha Han, and Hongyun So present a system‐on‐chip decoupling system using a sponge‐based pressure sensor. The proposed novel decoupling system could separate thermal effects from the pressure sensor using a deep neural network‐based regression model, and thus, enhance the reliability of the pressure sensor under variable temperature environments.
ISSN:2640-4567
2640-4567
DOI:10.1002/aisy.202370051