Robustness and sensitivity analyses of rough Volterra stochastic volatility models

In this paper, we analyze the robustness and sensitivity of various continuous-time rough Volterra stochastic volatility models in relation to the process of market calibration. Model robustness is examined from two perspectives: the sensitivity of option price estimates and the sensitivity of param...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of finance 2023-12, Vol.19 (4), p.523-543
Hauptverfasser: Matas, Jan, Pospíšil, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we analyze the robustness and sensitivity of various continuous-time rough Volterra stochastic volatility models in relation to the process of market calibration. Model robustness is examined from two perspectives: the sensitivity of option price estimates and the sensitivity of parameter estimates to changes in the option data structure. The following sensitivity analysis consists of statistical tests to determine whether a given studied model is sensitive to changes in the option data structure based on the distribution of parameter estimates. Empirical study is performed on a data set consisting of Apple Inc. equity options traded on four different days in April and May 2015. In particular, the results for RFSV, rBergomi and α RFSV models are provided and compared to the results for Heston, Bates, and AFSVJD models.
ISSN:1614-2446
1614-2454
DOI:10.1007/s10436-023-00433-2