Influences of Wind Deviation on the Ground Resultant Electric Field under Parallel Operation of 750-kV Ultra-High-Voltage Alternating Current and ±800-kV Extra-High-Voltage Direct Current Transmission Lines Passing through Residential Areas in a High-Altitude Area

The formation mechanism of the resultant electric field is complex under parallel operation of extra-high-voltage alternating current (AC)/direct current (DC) transmission lines. However, existing methods are computationally expensive and fail to guarantee the stability and convergency of results. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2023, Vol.2023 (1)
Hauptverfasser: Liu, Hui, Lang, Xujun, Li, Ziyang, Sun, Zhibing, Huang, Shilong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The formation mechanism of the resultant electric field is complex under parallel operation of extra-high-voltage alternating current (AC)/direct current (DC) transmission lines. However, existing methods are computationally expensive and fail to guarantee the stability and convergency of results. To solve this problem, a calculation method with nonuniform grids and varying time steps was proposed on the basis of the finite-volume and finite-element method for calculating the ground resultant electric field of parallel AC/DC transmission lines. The selection of the initial value of space charges and the setting of the surface charge density of conductors were also improved, which greatly enhanced the computational stability and efficiency. Then, the improved method was adopted to calculate the ground resultant electric field under parallel operation of a 750-kV AC transmission line and a ±800-kV DC transmission line when considering and not considering wind deviation. Results show that, when ignoring wind deviation, the normalized values of the ground resultant electric field within 6 m from the side-phase conductor of the AC line are always less than 1 under conditions of the minimum clearances to earth of the AC and DC lines passing through a residential area stipulated in the national standards, which meets codified requirements. When considering wind deviation, instead of an increase, the calculated ground resultant electric field of parallel AC/DC lines is significantly reduced, and the weighted value is much less than the limiting value.
ISSN:1024-123X
1563-5147
DOI:10.1155/2023/2373118