Some Results About Equichordal Convex Bodies

Let K and L be two convex bodies in  R n , n ≥ 2 , with L ⊂ int K . We say that L is an equichordal body for K if every chord of K tangent to L has length equal to a given fixed value  λ . Barker and Larman (Discrete Math. 241 (1–3), 79–96 (2001)) proved that if L is a ball, then K is a ball concent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2023-12, Vol.70 (4), p.1741-1750
Hauptverfasser: Jerónimo-Castro, Jesús, Jimenez-Lopez, Francisco G., Morales-Amaya, Efrén
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let K and L be two convex bodies in  R n , n ≥ 2 , with L ⊂ int K . We say that L is an equichordal body for K if every chord of K tangent to L has length equal to a given fixed value  λ . Barker and Larman (Discrete Math. 241 (1–3), 79–96 (2001)) proved that if L is a ball, then K is a ball concentric with  L . In this paper we prove that there exist an infinite number of closed curves, different from circles, which possess an equichordal convex body. If the dimension of the space is more than or equal to 3, then only Euclidean balls possess an equichordal convex body.
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-023-00543-8