Some Results About Equichordal Convex Bodies
Let K and L be two convex bodies in R n , n ≥ 2 , with L ⊂ int K . We say that L is an equichordal body for K if every chord of K tangent to L has length equal to a given fixed value λ . Barker and Larman (Discrete Math. 241 (1–3), 79–96 (2001)) proved that if L is a ball, then K is a ball concent...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2023-12, Vol.70 (4), p.1741-1750 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
K
and
L
be two convex bodies in
R
n
,
n
≥
2
, with
L
⊂
int
K
. We say that
L
is an
equichordal body
for
K
if every chord of
K
tangent to
L
has length equal to a given fixed value
λ
. Barker and Larman (Discrete Math.
241
(1–3), 79–96 (2001)) proved that if
L
is a ball, then
K
is a ball concentric with
L
. In this paper we prove that there exist an infinite number of closed curves, different from circles, which possess an equichordal convex body. If the dimension of the space is more than or equal to 3, then only Euclidean balls possess an equichordal convex body. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-023-00543-8 |