Detection of Escherichia coli Using Highly Sensitive Surface Plasmon Resonance Nanostructure (SPRN) Based on MXene 2D Nanomaterial

Escherichia coli (E.C.) bacterium detection in drinking water is a global issue since it can cause dangerous illnesses in the human body. In this work, an SPRN biosensor with prism, silver, MXene, and analyte is suggested theoretically for the rapid and accurate identification of E.C. in drinking wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasmonics (Norwell, Mass.) Mass.), 2023-12, Vol.18 (6), p.2483-2492
Hauptverfasser: Daher, Malek G., Trabelsi, Youssef, Ahmed, Naser M., Prajapati, Yogenra Kumar, Rashed, Ahmed Nabih Zaki, Patel, Shobhit K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Escherichia coli (E.C.) bacterium detection in drinking water is a global issue since it can cause dangerous illnesses in the human body. In this work, an SPRN biosensor with prism, silver, MXene, and analyte is suggested theoretically for the rapid and accurate identification of E.C. in drinking water. Many different prisms are investigated: BK7, N-FK51A, SF10, and 2S2G. It is demonstrated that the structure with the prism N-FK51A corresponds to the highest sensitivity; hence, it is taken into consideration for additional studies. Since an MXene layer has a stronger light-matter interaction and a larger surface area, it enhances the surface-biomolecules adsorption. To increase sensor sensitivity, the thickness of the silver layer and the number of MXene layers are adjusted. With a bi-layer of MXene, and 50 nm silver, the SPRN biosensor can acquired a sensitivity of about 212.54 degree/RIU. We believe the suggested sensor will be beneficial for application in the field of microbe identification and has a simple construction to make fabrication easier.
ISSN:1557-1955
1557-1963
DOI:10.1007/s11468-023-01970-2