Recycling Compatible Organic Electrode Materials Containing Amide Bonds for Use in Rechargeable Batteries
Organic rechargeable batteries that do not use any scarce heavy metals are candidates for the next generation of rechargeable batteries; although, it is not easy to realize both high capacity and long cycle life. Organic compounds linked by amide bonds are expected to have superior recycling propert...
Gespeichert in:
Veröffentlicht in: | Polymers 2023-11, Vol.15 (22), p.4395 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Organic rechargeable batteries that do not use any scarce heavy metals are candidates for the next generation of rechargeable batteries; although, it is not easy to realize both high capacity and long cycle life. Organic compounds linked by amide bonds are expected to have superior recycling properties after battery degradation, since they will become a single monomer upon hydrolysis. In this study, anthraquinone was chosen as a model redox active unit, and dimeric and trimeric compounds were synthesized, their cycle performances as electrode materials for use in rechargeable batteries were compared, and a trend in which oligomerization improves cycle properties was confirmed. Furthermore, quantum chemistry calculations suggest that oligomerization decreases solubility, which would support a longer life for oligomerized compounds. This methodology will lead to the development of organic rechargeable batteries with further environmental benefits. |
---|---|
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym15224395 |