RETRACTED ARTICLE: AI-driven electro chromic materials and devices for nanofabrication in machine learning integrated environments
This study looks into the introduction of AI-driven electrochromic materials and devices into nanofabrication methods for use in ML-integrated environments. When exposed to an electric field, electrochromic materials experience reversible changes in optical properties due to dynamic optical modulati...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2024, Vol.56 (1), Article 15 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study looks into the introduction of AI-driven electrochromic materials and devices into nanofabrication methods for use in ML-integrated environments. When exposed to an electric field, electrochromic materials experience reversible changes in optical properties due to dynamic optical modulation. Because of developments in AI-assisted design, optimization, and fabrication, advanced electrochromic devices with improved performance are now conceivable. The incorporation of AI-optimized electrochromic materials into nanofabrication operations and their application in ML-integrated systems are described, as well as their synthesis and characterization. Several test datasets revealed that the AI-driven strategy improved OME, Response Times, CE, and EE. These findings validate the importance of applying AI algorithms to guide material design, optimize production, and enable real-time adaptation for greater optical modulation and energy efficiency. |
---|---|
ISSN: | 0306-8919 1572-817X |
DOI: | 10.1007/s11082-023-05656-1 |