Construction of Polynomial Eigenfunctions of a Second-Order Linear Differential Equation
A system of third-order recurrence relations for the coefficients of polynomial eigenfunctions (PEFs) of a differential equation is solved. A recurrence relation for three consecutive PEFs and a formula for differentiating PEFs are obtained. We consider differential equations one of which generalize...
Gespeichert in:
Veröffentlicht in: | Differential equations 2023-09, Vol.59 (9), p.1166-1174 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A system of third-order recurrence relations for the coefficients of polynomial eigenfunctions (PEFs) of a differential equation is solved. A recurrence relation for three consecutive PEFs and a formula for differentiating PEFs are obtained. We consider differential equations one of which generalizes the Hermite and Laguerre differential equations and the other is a generalization of the Jacobi differential equation. For these equations, we construct functions bringing them to self-adjoint form and find conditions under which these functions become weight functions. Examples are given where the PEFs for nonweight functions do not have real zeros. |
---|---|
ISSN: | 0012-2661 1608-3083 |
DOI: | 10.1134/S0012266123090021 |