Triples of almost primes
The k -tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes p such that p + 2 and p + 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes p such that Ω( p + 2) ⩽ 3 and Ω( p + 6) ⩽ 6, where Ω( n ) denotes the total number of pr...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2023-12, Vol.66 (12), p.2779-2794 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2794 |
---|---|
container_issue | 12 |
container_start_page | 2779 |
container_title | Science China. Mathematics |
container_volume | 66 |
creator | Li, Jiamin Liu, Jianya |
description | The
k
-tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes
p
such that
p
+ 2 and
p
+ 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes
p
such that Ω(
p
+ 2) ⩽ 3 and Ω(
p
+ 6) ⩽ 6, where Ω(
n
) denotes the total number of prime divisors of an integer
n
. We also prove a better conditional result, with the above Ω(
p
+ 6) ⩽ 6 replaced by Ω(
p
+ 6) ⩽ 3, under the Elliott-Halberstam conjecture. |
doi_str_mv | 10.1007/s11425-023-2226-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892980325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892980325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-326035f3a261e3c169954c23f0ba0c8e31e3f9196bc18b1f422c9da60169f34a3</originalsourceid><addsrcrecordid>eNp1kE1LBDEMhosouKx719uA52qatJ3pURa_YMHLei6d2sousztjO3vw39thBE_mkITwvkl4GLsRcCcA6vsshETFAYkjoubqjC1Eow0vCc9Lr2vJa2zokq1y3kMJMiBrWrDrbdoNXchVHyvXHfo8VkPaHUK-YhfRdTmsfuuSvT89btcvfPP2_Lp-2HBPyoycUAOpSA61COSFNkZJjxShdeCbQGUajTC69aJpRZSI3nw4DUUZSTpastt575D6r1PIo933p3QsJy02Bk0DhKqoxKzyqc85hWinL136tgLsxMDODGxhYCcGdvLg7MlFe_wM6W_z_6YfC3dbUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892980325</pqid></control><display><type>article</type><title>Triples of almost primes</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Jiamin ; Liu, Jianya</creator><creatorcontrib>Li, Jiamin ; Liu, Jianya</creatorcontrib><description>The
k
-tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes
p
such that
p
+ 2 and
p
+ 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes
p
such that Ω(
p
+ 2) ⩽ 3 and Ω(
p
+ 6) ⩽ 6, where Ω(
n
) denotes the total number of prime divisors of an integer
n
. We also prove a better conditional result, with the above Ω(
p
+ 6) ⩽ 6 replaced by Ω(
p
+ 6) ⩽ 3, under the Elliott-Halberstam conjecture.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-023-2226-5</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Mathematics ; Mathematics and Statistics</subject><ispartof>Science China. Mathematics, 2023-12, Vol.66 (12), p.2779-2794</ispartof><rights>Science China Press 2023</rights><rights>Science China Press 2023.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-326035f3a261e3c169954c23f0ba0c8e31e3f9196bc18b1f422c9da60169f34a3</citedby><cites>FETCH-LOGICAL-c359t-326035f3a261e3c169954c23f0ba0c8e31e3f9196bc18b1f422c9da60169f34a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-023-2226-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-023-2226-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Jiamin</creatorcontrib><creatorcontrib>Liu, Jianya</creatorcontrib><title>Triples of almost primes</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>The
k
-tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes
p
such that
p
+ 2 and
p
+ 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes
p
such that Ω(
p
+ 2) ⩽ 3 and Ω(
p
+ 6) ⩽ 6, where Ω(
n
) denotes the total number of prime divisors of an integer
n
. We also prove a better conditional result, with the above Ω(
p
+ 6) ⩽ 6 replaced by Ω(
p
+ 6) ⩽ 3, under the Elliott-Halberstam conjecture.</description><subject>Applications of Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LBDEMhosouKx719uA52qatJ3pURa_YMHLei6d2sousztjO3vw39thBE_mkITwvkl4GLsRcCcA6vsshETFAYkjoubqjC1Eow0vCc9Lr2vJa2zokq1y3kMJMiBrWrDrbdoNXchVHyvXHfo8VkPaHUK-YhfRdTmsfuuSvT89btcvfPP2_Lp-2HBPyoycUAOpSA61COSFNkZJjxShdeCbQGUajTC69aJpRZSI3nw4DUUZSTpastt575D6r1PIo933p3QsJy02Bk0DhKqoxKzyqc85hWinL136tgLsxMDODGxhYCcGdvLg7MlFe_wM6W_z_6YfC3dbUA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Li, Jiamin</creator><creator>Liu, Jianya</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Triples of almost primes</title><author>Li, Jiamin ; Liu, Jianya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-326035f3a261e3c169954c23f0ba0c8e31e3f9196bc18b1f422c9da60169f34a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jiamin</creatorcontrib><creatorcontrib>Liu, Jianya</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jiamin</au><au>Liu, Jianya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Triples of almost primes</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>66</volume><issue>12</issue><spage>2779</spage><epage>2794</epage><pages>2779-2794</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>The
k
-tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes
p
such that
p
+ 2 and
p
+ 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes
p
such that Ω(
p
+ 2) ⩽ 3 and Ω(
p
+ 6) ⩽ 6, where Ω(
n
) denotes the total number of prime divisors of an integer
n
. We also prove a better conditional result, with the above Ω(
p
+ 6) ⩽ 6 replaced by Ω(
p
+ 6) ⩽ 3, under the Elliott-Halberstam conjecture.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-023-2226-5</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2023-12, Vol.66 (12), p.2779-2794 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2892980325 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Applications of Mathematics Mathematics Mathematics and Statistics |
title | Triples of almost primes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A09%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Triples%20of%20almost%20primes&rft.jtitle=Science%20China.%20Mathematics&rft.au=Li,%20Jiamin&rft.date=2023-12-01&rft.volume=66&rft.issue=12&rft.spage=2779&rft.epage=2794&rft.pages=2779-2794&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-023-2226-5&rft_dat=%3Cproquest_cross%3E2892980325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892980325&rft_id=info:pmid/&rfr_iscdi=true |