Triples of almost primes

The k -tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes p such that p + 2 and p + 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes p such that Ω( p + 2) ⩽ 3 and Ω( p + 6) ⩽ 6, where Ω( n ) denotes the total number of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2023-12, Vol.66 (12), p.2779-2794
Hauptverfasser: Li, Jiamin, Liu, Jianya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The k -tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes p such that p + 2 and p + 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes p such that Ω( p + 2) ⩽ 3 and Ω( p + 6) ⩽ 6, where Ω( n ) denotes the total number of prime divisors of an integer n . We also prove a better conditional result, with the above Ω( p + 6) ⩽ 6 replaced by Ω( p + 6) ⩽ 3, under the Elliott-Halberstam conjecture.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-023-2226-5