Triples of almost primes
The k -tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes p such that p + 2 and p + 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes p such that Ω( p + 2) ⩽ 3 and Ω( p + 6) ⩽ 6, where Ω( n ) denotes the total number of pr...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2023-12, Vol.66 (12), p.2779-2794 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The
k
-tuple conjecture of Hardy and Littlewood predicts that there are infinitely many primes
p
such that
p
+ 2 and
p
+ 6 are primes simultaneously. In this paper, we prove that there are infinitely many primes
p
such that Ω(
p
+ 2) ⩽ 3 and Ω(
p
+ 6) ⩽ 6, where Ω(
n
) denotes the total number of prime divisors of an integer
n
. We also prove a better conditional result, with the above Ω(
p
+ 6) ⩽ 6 replaced by Ω(
p
+ 6) ⩽ 3, under the Elliott-Halberstam conjecture. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-023-2226-5 |