Dimension‐independent Markov chain Monte Carlo on the sphere

We consider Bayesian analysis on high‐dimensional spheres with angular central Gaussian priors. These priors model antipodally symmetric directional data, are easily defined in Hilbert spaces and occur, for instance, in Bayesian density estimation and binary level set inversion. In this paper we der...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2023-12, Vol.50 (4), p.1818-1858
Hauptverfasser: Lie, Han Cheng, Rudolf, Daniel, Sprungk, Björn, Sullivan, T. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider Bayesian analysis on high‐dimensional spheres with angular central Gaussian priors. These priors model antipodally symmetric directional data, are easily defined in Hilbert spaces and occur, for instance, in Bayesian density estimation and binary level set inversion. In this paper we derive efficient Markov chain Monte Carlo methods for approximate sampling of posteriors with respect to these priors. Our approaches rely on lifting the sampling problem to the ambient Hilbert space and exploit existing dimension‐independent samplers in linear spaces. By a push‐forward Markov kernel construction we then obtain Markov chains on the sphere which inherit reversibility and spectral gap properties from samplers in linear spaces. Moreover, our proposed algorithms show dimension‐independent efficiency in numerical experiments.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12653