Sparse principal component analysis for high‐dimensional stationary time series

We consider the sparse principal component analysis for high‐dimensional stationary processes. The standard principal component analysis performs poorly when the dimension of the process is large. We establish oracle inequalities for penalized principal component estimators for the large class of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scandinavian journal of statistics 2023-12, Vol.50 (4), p.1953-1983
Hauptverfasser: Fujimori, Kou, Goto, Yuichi, Liu, Yan, Taniguchi, Masanobu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the sparse principal component analysis for high‐dimensional stationary processes. The standard principal component analysis performs poorly when the dimension of the process is large. We establish oracle inequalities for penalized principal component estimators for the large class of processes including heavy‐tailed time series. The rate of convergence of the estimators is established. We also elucidate the theoretical rate for choosing the tuning parameter in penalized estimators. The performance of the sparse principal component analysis is demonstrated by numerical simulations. The utility of the sparse principal component analysis for time series data is exemplified by the application to average temperature data.
ISSN:0303-6898
1467-9469
DOI:10.1111/sjos.12664