A thresholding algorithm to Willmore-type flows via fourth order linear parabolic equation

We propose a thresholding algorithm to Willmore-type flows in \(\mathbb{R}^N\). This algorithm is constructed based on the asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-11
Hauptverfasser: Ishii, Katsuyuki, Kohsaka, Yoshihito, Miyake, Nobuhito, Sakakibara, Koya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a thresholding algorithm to Willmore-type flows in \(\mathbb{R}^N\). This algorithm is constructed based on the asymptotic expansion of the solution to the initial value problem for a fourth order linear parabolic partial differential equation whose initial data is the indicator function on the compact set \(\Omega_0\). The main results of this paper demonstrate that the boundary \(\partial\Omega(t)\) of the new set \(\Omega(t)\), generated by our algorithm, is included in \(O(t)\)-neighborhood of \(\partial\Omega_0\) for small \(t>0\) and that the normal velocity from \( \partial\Omega_0 \) to \( \partial\Omega(t) \) is nearly equal to the \(L^2\)-gradient of Willmore-type energy for small \( t>0 \). Finally, numerical examples of planar curves governed by the Willmore flow are provided by using our thresholding algorithm.
ISSN:2331-8422