MIFA: Metadata, Incentives, Formats, and Accessibility guidelines to improve the reuse of AI datasets for bioimage analysis

Artificial Intelligence methods are powerful tools for biological image analysis and processing. High-quality annotated images are key to training and developing new methods, but access to such data is often hindered by the lack of standards for sharing datasets. We brought together community expert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-11
Hauptverfasser: Zulueta-Coarasa, Teresa, Jug, Florian, Mathur, Aastha, Moore, Josh, Muñoz-Barrutia, Arrate, Liviu Anita, Babalola, Kola, Bankhead, Pete, Perrine Gilloteaux, Gogoberidze, Nodar, Jones, Martin, Kleywegt, Gerard J, Korir, Paul, Kreshuk, Anna, Yoldaş, Aybüke Küpcü, Marconato, Luca, Narayan, Kedar, Norlin, Nils, Oezdemir, Bugra, Riesterer, Jessica, Rzepka, Norman, Sarkans, Ugis, Serrano, Beatriz, Tischer, Christian, Uhlmann, Virginie, Ulman, Vladimír, Hartley, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Artificial Intelligence methods are powerful tools for biological image analysis and processing. High-quality annotated images are key to training and developing new methods, but access to such data is often hindered by the lack of standards for sharing datasets. We brought together community experts in a workshop to develop guidelines to improve the reuse of bioimages and annotations for AI applications. These include standards on data formats, metadata, data presentation and sharing, and incentives to generate new datasets. We are positive that the MIFA (Metadata, Incentives, Formats, and Accessibility) recommendations will accelerate the development of AI tools for bioimage analysis by facilitating access to high quality training data.
ISSN:2331-8422