Machine learning, misinformation, and citizen science

Current methods of operationalizing concepts of misinformation in machine learning are often problematic given idiosyncrasies in their success conditions compared to other models employed in the natural and social sciences. The intrinsic value-ladenness of misinformation and the dynamic relationship...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal for philosophy of science 2023-12, Vol.13 (4), Article 56
1. Verfasser: Yee, Adrian K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Current methods of operationalizing concepts of misinformation in machine learning are often problematic given idiosyncrasies in their success conditions compared to other models employed in the natural and social sciences. The intrinsic value-ladenness of misinformation and the dynamic relationship between citizens’ and social scientists’ concepts of misinformation jointly suggest that both the construct legitimacy and the construct validity of these models needs to be assessed via more democratic criteria than has previously been recognized.
ISSN:1879-4912
1879-4920
DOI:10.1007/s13194-023-00558-1