Normalized Solutions for the Critical Schrödinger–Bopp–Podolsky System
In this paper, we study the following Schrödinger—Bopp-Podolsky equation with prescribed mass - Δ u + λ u - κ 1 - e - | x | a | x | ∗ | u | 2 u = | u | 4 u , in R 3 , u > 0 , ∫ R 3 u 2 d x = c 2 , where c , a > 0 and κ ∈ R \ { 0 } are fixed constants and λ ∈ R appears as a Lagrange multiplier....
Gespeichert in:
Veröffentlicht in: | Bulletin of the Malaysian Mathematical Sciences Society 2024, Vol.47 (1), Article 9 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the following Schrödinger—Bopp-Podolsky equation with prescribed mass
-
Δ
u
+
λ
u
-
κ
1
-
e
-
|
x
|
a
|
x
|
∗
|
u
|
2
u
=
|
u
|
4
u
,
in
R
3
,
u
>
0
,
∫
R
3
u
2
d
x
=
c
2
,
where
c
,
a
>
0
and
κ
∈
R
\
{
0
}
are fixed constants and
λ
∈
R
appears as a Lagrange multiplier. For
κ
>
0
, using a truncation argument and a measure representation lemma due to Lions, we prove that the above system admits at least
n
pairs of radial normalized solutions
u
j
a
(
j
=
1
,
2
,
…
,
n
) with negative energy. Moreover, for each
j
=
1
,
2
,
…
,
n
, we study the asymptotic behavior of
u
j
a
with respect to
a
. For
κ
<
0
, we obtain a non-existence result by using a Liouville-type Theorem and the Pohozaev identity. |
---|---|
ISSN: | 0126-6705 2180-4206 |
DOI: | 10.1007/s40840-023-01609-9 |