Urea‐Modified Ternary Aqueous Electrolyte With Tuned Intermolecular Interactions and Confined Water Activity for High‐Stability and High‐Voltage Zinc‐Ion Batteries

Aqueous zinc‐ion batteries (ZIBs) gain attention as promising energy storage devices due to their high safety. However, the narrow electrochemical window and unfavorable side reactions induced by water decomposition restrict their development. Thus, confining water activity to enhance stability and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-11, Vol.33 (48), p.n/a
Hauptverfasser: Wang, Ziqing, Diao, Jiefeng, Burrow, James N., Reimund, Kevin K., Katyal, Naman, Henkelman, Graeme, Mullins, Charles Buddie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 48
container_start_page
container_title Advanced functional materials
container_volume 33
creator Wang, Ziqing
Diao, Jiefeng
Burrow, James N.
Reimund, Kevin K.
Katyal, Naman
Henkelman, Graeme
Mullins, Charles Buddie
description Aqueous zinc‐ion batteries (ZIBs) gain attention as promising energy storage devices due to their high safety. However, the narrow electrochemical window and unfavorable side reactions induced by water decomposition restrict their development. Thus, confining water activity to enhance stability and enlarge the electrochemical window is required. Herein, a 2.9 m (mol kgsolvent−1) Zn(ClO4)2−CO(NH2)2−H2O ternary aqueous eutectic electrolyte is prepared with restricted water activity at room temperature. The strong intermolecular interactions between CO(NH2)2 and H2O decrease the free H2O molecules and reduce their activity to suppress the parasitic reactions. Compared to conventional aqueous electrolytes, this urea‐modified electrolyte exhibits similar ionic conductivity (6.83 mS cm−1) and viscosity (29.5 mPa s) but with a significantly expanded electrochemical stability window (2.6 V) than the conventional one (1.7 V). Additionally, the preferential adsorption and reduction of urea molecules on the zinc surface mediate the formation of an organic solid electrolyte interphase, which passivates the anode and facilitates homogeneous zinc deposition. As a result, this ternary aqueous electrolyte enables high‐voltage zinc/vanadium batteries with a capacity of 125 mAh g−1 for 300 cycles at 5 A g−1. This finding demonstrates a low‐cost and practicable approach for realizing stable aqueous zinc‐ion batteries with an enlarged electrochemical stability window. A urea‐modified ternary aqueous electrolyte prepared at room temperature is proposed. The H‐bonds network between urea and water limits the free water activity to decrease side reactions. The reduction of urea forms an organic solid electrolyte interphase to regulate the Zn deposition on the anode. This low‐cost and practicable electrolyte enables high‐voltage aqueous zinc/vanadium batteries with enhanced capacity and stability.
doi_str_mv 10.1002/adfm.202304791
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892575736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892575736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3171-6b5b808360d02fc9de9865ef5a9e8819ae350bf1ff9ee7920cb0f0bf43bf2c6b3</originalsourceid><addsrcrecordid>eNqFUbtOwzAUjRBIlMLKbIm5xY_m4bGUllYCMVAoYomc5Lp1lcbFdkDZ-AT-g7_iS3DUCkYm-57HvdI5QXBOcJ9gTC9FITd9iinDg5iTg6BDIhL1GKbJ4e-fPB8HJ9auMSZxzAad4OvRgPj--LzThZIKCjQHUwnToOFrDbq2aFxC7owuGwdoodwKzevKy2aVA7PRnqxLYXajyJ3SlUWiKtBIV1K1woXwDBp66k25Bklt0FQtV_7kgxOZKluwNezBJ106sQT0oqrcjzNdoSvh_AoF9jQ4kqK0cLZ_u8HjZDwfTXu39zez0fC2lzMSk16UhVmCExbhAlOZ8wJ4EoUgQ8EhSQgXwEKcSSIlB4g5xXmGpQcGLJM0jzLWDS52e7dG-xSsS9e69qmUNqUJp2Ecxizyqv5OlRttrQGZbo3a-OhSgtO2kLQtJP0txBv4zvCuSmj-UafD68ndn_cHLzOXXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892575736</pqid></control><display><type>article</type><title>Urea‐Modified Ternary Aqueous Electrolyte With Tuned Intermolecular Interactions and Confined Water Activity for High‐Stability and High‐Voltage Zinc‐Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Ziqing ; Diao, Jiefeng ; Burrow, James N. ; Reimund, Kevin K. ; Katyal, Naman ; Henkelman, Graeme ; Mullins, Charles Buddie</creator><creatorcontrib>Wang, Ziqing ; Diao, Jiefeng ; Burrow, James N. ; Reimund, Kevin K. ; Katyal, Naman ; Henkelman, Graeme ; Mullins, Charles Buddie</creatorcontrib><description>Aqueous zinc‐ion batteries (ZIBs) gain attention as promising energy storage devices due to their high safety. However, the narrow electrochemical window and unfavorable side reactions induced by water decomposition restrict their development. Thus, confining water activity to enhance stability and enlarge the electrochemical window is required. Herein, a 2.9 m (mol kgsolvent−1) Zn(ClO4)2−CO(NH2)2−H2O ternary aqueous eutectic electrolyte is prepared with restricted water activity at room temperature. The strong intermolecular interactions between CO(NH2)2 and H2O decrease the free H2O molecules and reduce their activity to suppress the parasitic reactions. Compared to conventional aqueous electrolytes, this urea‐modified electrolyte exhibits similar ionic conductivity (6.83 mS cm−1) and viscosity (29.5 mPa s) but with a significantly expanded electrochemical stability window (2.6 V) than the conventional one (1.7 V). Additionally, the preferential adsorption and reduction of urea molecules on the zinc surface mediate the formation of an organic solid electrolyte interphase, which passivates the anode and facilitates homogeneous zinc deposition. As a result, this ternary aqueous electrolyte enables high‐voltage zinc/vanadium batteries with a capacity of 125 mAh g−1 for 300 cycles at 5 A g−1. This finding demonstrates a low‐cost and practicable approach for realizing stable aqueous zinc‐ion batteries with an enlarged electrochemical stability window. A urea‐modified ternary aqueous electrolyte prepared at room temperature is proposed. The H‐bonds network between urea and water limits the free water activity to decrease side reactions. The reduction of urea forms an organic solid electrolyte interphase to regulate the Zn deposition on the anode. This low‐cost and practicable electrolyte enables high‐voltage aqueous zinc/vanadium batteries with enhanced capacity and stability.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202304791</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aqueous electrolytes ; aqueous zinc‐ion batteries ; Batteries ; Chemical reactions ; Decomposition reactions ; Electrolytes ; Energy storage ; enlarged electrochemical window ; High voltages ; hydrogen bonds ; Ion currents ; low cost ; Materials science ; reduced water activity ; Room temperature ; solid electrolyte interphase ; Solid electrolytes ; Stability ; Ureas ; Water activity ; Water chemistry ; Zinc</subject><ispartof>Advanced functional materials, 2023-11, Vol.33 (48), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3171-6b5b808360d02fc9de9865ef5a9e8819ae350bf1ff9ee7920cb0f0bf43bf2c6b3</citedby><cites>FETCH-LOGICAL-c3171-6b5b808360d02fc9de9865ef5a9e8819ae350bf1ff9ee7920cb0f0bf43bf2c6b3</cites><orcidid>0000-0001-6976-7689 ; 0000-0002-9967-6814 ; 0000-0002-0336-7153 ; 0000-0003-1030-4801 ; 0000-0002-7445-3788 ; 0000-0001-7746-0409 ; 0000-0001-8471-5553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202304791$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202304791$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Ziqing</creatorcontrib><creatorcontrib>Diao, Jiefeng</creatorcontrib><creatorcontrib>Burrow, James N.</creatorcontrib><creatorcontrib>Reimund, Kevin K.</creatorcontrib><creatorcontrib>Katyal, Naman</creatorcontrib><creatorcontrib>Henkelman, Graeme</creatorcontrib><creatorcontrib>Mullins, Charles Buddie</creatorcontrib><title>Urea‐Modified Ternary Aqueous Electrolyte With Tuned Intermolecular Interactions and Confined Water Activity for High‐Stability and High‐Voltage Zinc‐Ion Batteries</title><title>Advanced functional materials</title><description>Aqueous zinc‐ion batteries (ZIBs) gain attention as promising energy storage devices due to their high safety. However, the narrow electrochemical window and unfavorable side reactions induced by water decomposition restrict their development. Thus, confining water activity to enhance stability and enlarge the electrochemical window is required. Herein, a 2.9 m (mol kgsolvent−1) Zn(ClO4)2−CO(NH2)2−H2O ternary aqueous eutectic electrolyte is prepared with restricted water activity at room temperature. The strong intermolecular interactions between CO(NH2)2 and H2O decrease the free H2O molecules and reduce their activity to suppress the parasitic reactions. Compared to conventional aqueous electrolytes, this urea‐modified electrolyte exhibits similar ionic conductivity (6.83 mS cm−1) and viscosity (29.5 mPa s) but with a significantly expanded electrochemical stability window (2.6 V) than the conventional one (1.7 V). Additionally, the preferential adsorption and reduction of urea molecules on the zinc surface mediate the formation of an organic solid electrolyte interphase, which passivates the anode and facilitates homogeneous zinc deposition. As a result, this ternary aqueous electrolyte enables high‐voltage zinc/vanadium batteries with a capacity of 125 mAh g−1 for 300 cycles at 5 A g−1. This finding demonstrates a low‐cost and practicable approach for realizing stable aqueous zinc‐ion batteries with an enlarged electrochemical stability window. A urea‐modified ternary aqueous electrolyte prepared at room temperature is proposed. The H‐bonds network between urea and water limits the free water activity to decrease side reactions. The reduction of urea forms an organic solid electrolyte interphase to regulate the Zn deposition on the anode. This low‐cost and practicable electrolyte enables high‐voltage aqueous zinc/vanadium batteries with enhanced capacity and stability.</description><subject>Aqueous electrolytes</subject><subject>aqueous zinc‐ion batteries</subject><subject>Batteries</subject><subject>Chemical reactions</subject><subject>Decomposition reactions</subject><subject>Electrolytes</subject><subject>Energy storage</subject><subject>enlarged electrochemical window</subject><subject>High voltages</subject><subject>hydrogen bonds</subject><subject>Ion currents</subject><subject>low cost</subject><subject>Materials science</subject><subject>reduced water activity</subject><subject>Room temperature</subject><subject>solid electrolyte interphase</subject><subject>Solid electrolytes</subject><subject>Stability</subject><subject>Ureas</subject><subject>Water activity</subject><subject>Water chemistry</subject><subject>Zinc</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFUbtOwzAUjRBIlMLKbIm5xY_m4bGUllYCMVAoYomc5Lp1lcbFdkDZ-AT-g7_iS3DUCkYm-57HvdI5QXBOcJ9gTC9FITd9iinDg5iTg6BDIhL1GKbJ4e-fPB8HJ9auMSZxzAad4OvRgPj--LzThZIKCjQHUwnToOFrDbq2aFxC7owuGwdoodwKzevKy2aVA7PRnqxLYXajyJ3SlUWiKtBIV1K1woXwDBp66k25Bklt0FQtV_7kgxOZKluwNezBJ106sQT0oqrcjzNdoSvh_AoF9jQ4kqK0cLZ_u8HjZDwfTXu39zez0fC2lzMSk16UhVmCExbhAlOZ8wJ4EoUgQ8EhSQgXwEKcSSIlB4g5xXmGpQcGLJM0jzLWDS52e7dG-xSsS9e69qmUNqUJp2Ecxizyqv5OlRttrQGZbo3a-OhSgtO2kLQtJP0txBv4zvCuSmj-UafD68ndn_cHLzOXXw</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Wang, Ziqing</creator><creator>Diao, Jiefeng</creator><creator>Burrow, James N.</creator><creator>Reimund, Kevin K.</creator><creator>Katyal, Naman</creator><creator>Henkelman, Graeme</creator><creator>Mullins, Charles Buddie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6976-7689</orcidid><orcidid>https://orcid.org/0000-0002-9967-6814</orcidid><orcidid>https://orcid.org/0000-0002-0336-7153</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><orcidid>https://orcid.org/0000-0002-7445-3788</orcidid><orcidid>https://orcid.org/0000-0001-7746-0409</orcidid><orcidid>https://orcid.org/0000-0001-8471-5553</orcidid></search><sort><creationdate>20231101</creationdate><title>Urea‐Modified Ternary Aqueous Electrolyte With Tuned Intermolecular Interactions and Confined Water Activity for High‐Stability and High‐Voltage Zinc‐Ion Batteries</title><author>Wang, Ziqing ; Diao, Jiefeng ; Burrow, James N. ; Reimund, Kevin K. ; Katyal, Naman ; Henkelman, Graeme ; Mullins, Charles Buddie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3171-6b5b808360d02fc9de9865ef5a9e8819ae350bf1ff9ee7920cb0f0bf43bf2c6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aqueous electrolytes</topic><topic>aqueous zinc‐ion batteries</topic><topic>Batteries</topic><topic>Chemical reactions</topic><topic>Decomposition reactions</topic><topic>Electrolytes</topic><topic>Energy storage</topic><topic>enlarged electrochemical window</topic><topic>High voltages</topic><topic>hydrogen bonds</topic><topic>Ion currents</topic><topic>low cost</topic><topic>Materials science</topic><topic>reduced water activity</topic><topic>Room temperature</topic><topic>solid electrolyte interphase</topic><topic>Solid electrolytes</topic><topic>Stability</topic><topic>Ureas</topic><topic>Water activity</topic><topic>Water chemistry</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ziqing</creatorcontrib><creatorcontrib>Diao, Jiefeng</creatorcontrib><creatorcontrib>Burrow, James N.</creatorcontrib><creatorcontrib>Reimund, Kevin K.</creatorcontrib><creatorcontrib>Katyal, Naman</creatorcontrib><creatorcontrib>Henkelman, Graeme</creatorcontrib><creatorcontrib>Mullins, Charles Buddie</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ziqing</au><au>Diao, Jiefeng</au><au>Burrow, James N.</au><au>Reimund, Kevin K.</au><au>Katyal, Naman</au><au>Henkelman, Graeme</au><au>Mullins, Charles Buddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Urea‐Modified Ternary Aqueous Electrolyte With Tuned Intermolecular Interactions and Confined Water Activity for High‐Stability and High‐Voltage Zinc‐Ion Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2023-11-01</date><risdate>2023</risdate><volume>33</volume><issue>48</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Aqueous zinc‐ion batteries (ZIBs) gain attention as promising energy storage devices due to their high safety. However, the narrow electrochemical window and unfavorable side reactions induced by water decomposition restrict their development. Thus, confining water activity to enhance stability and enlarge the electrochemical window is required. Herein, a 2.9 m (mol kgsolvent−1) Zn(ClO4)2−CO(NH2)2−H2O ternary aqueous eutectic electrolyte is prepared with restricted water activity at room temperature. The strong intermolecular interactions between CO(NH2)2 and H2O decrease the free H2O molecules and reduce their activity to suppress the parasitic reactions. Compared to conventional aqueous electrolytes, this urea‐modified electrolyte exhibits similar ionic conductivity (6.83 mS cm−1) and viscosity (29.5 mPa s) but with a significantly expanded electrochemical stability window (2.6 V) than the conventional one (1.7 V). Additionally, the preferential adsorption and reduction of urea molecules on the zinc surface mediate the formation of an organic solid electrolyte interphase, which passivates the anode and facilitates homogeneous zinc deposition. As a result, this ternary aqueous electrolyte enables high‐voltage zinc/vanadium batteries with a capacity of 125 mAh g−1 for 300 cycles at 5 A g−1. This finding demonstrates a low‐cost and practicable approach for realizing stable aqueous zinc‐ion batteries with an enlarged electrochemical stability window. A urea‐modified ternary aqueous electrolyte prepared at room temperature is proposed. The H‐bonds network between urea and water limits the free water activity to decrease side reactions. The reduction of urea forms an organic solid electrolyte interphase to regulate the Zn deposition on the anode. This low‐cost and practicable electrolyte enables high‐voltage aqueous zinc/vanadium batteries with enhanced capacity and stability.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202304791</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-6976-7689</orcidid><orcidid>https://orcid.org/0000-0002-9967-6814</orcidid><orcidid>https://orcid.org/0000-0002-0336-7153</orcidid><orcidid>https://orcid.org/0000-0003-1030-4801</orcidid><orcidid>https://orcid.org/0000-0002-7445-3788</orcidid><orcidid>https://orcid.org/0000-0001-7746-0409</orcidid><orcidid>https://orcid.org/0000-0001-8471-5553</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-11, Vol.33 (48), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2892575736
source Wiley Online Library Journals Frontfile Complete
subjects Aqueous electrolytes
aqueous zinc‐ion batteries
Batteries
Chemical reactions
Decomposition reactions
Electrolytes
Energy storage
enlarged electrochemical window
High voltages
hydrogen bonds
Ion currents
low cost
Materials science
reduced water activity
Room temperature
solid electrolyte interphase
Solid electrolytes
Stability
Ureas
Water activity
Water chemistry
Zinc
title Urea‐Modified Ternary Aqueous Electrolyte With Tuned Intermolecular Interactions and Confined Water Activity for High‐Stability and High‐Voltage Zinc‐Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Urea%E2%80%90Modified%20Ternary%20Aqueous%20Electrolyte%20With%20Tuned%20Intermolecular%20Interactions%20and%20Confined%20Water%20Activity%20for%20High%E2%80%90Stability%20and%20High%E2%80%90Voltage%20Zinc%E2%80%90Ion%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Wang,%20Ziqing&rft.date=2023-11-01&rft.volume=33&rft.issue=48&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202304791&rft_dat=%3Cproquest_cross%3E2892575736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892575736&rft_id=info:pmid/&rfr_iscdi=true