Urea‐Modified Ternary Aqueous Electrolyte With Tuned Intermolecular Interactions and Confined Water Activity for High‐Stability and High‐Voltage Zinc‐Ion Batteries

Aqueous zinc‐ion batteries (ZIBs) gain attention as promising energy storage devices due to their high safety. However, the narrow electrochemical window and unfavorable side reactions induced by water decomposition restrict their development. Thus, confining water activity to enhance stability and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-11, Vol.33 (48), p.n/a
Hauptverfasser: Wang, Ziqing, Diao, Jiefeng, Burrow, James N., Reimund, Kevin K., Katyal, Naman, Henkelman, Graeme, Mullins, Charles Buddie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aqueous zinc‐ion batteries (ZIBs) gain attention as promising energy storage devices due to their high safety. However, the narrow electrochemical window and unfavorable side reactions induced by water decomposition restrict their development. Thus, confining water activity to enhance stability and enlarge the electrochemical window is required. Herein, a 2.9 m (mol kgsolvent−1) Zn(ClO4)2−CO(NH2)2−H2O ternary aqueous eutectic electrolyte is prepared with restricted water activity at room temperature. The strong intermolecular interactions between CO(NH2)2 and H2O decrease the free H2O molecules and reduce their activity to suppress the parasitic reactions. Compared to conventional aqueous electrolytes, this urea‐modified electrolyte exhibits similar ionic conductivity (6.83 mS cm−1) and viscosity (29.5 mPa s) but with a significantly expanded electrochemical stability window (2.6 V) than the conventional one (1.7 V). Additionally, the preferential adsorption and reduction of urea molecules on the zinc surface mediate the formation of an organic solid electrolyte interphase, which passivates the anode and facilitates homogeneous zinc deposition. As a result, this ternary aqueous electrolyte enables high‐voltage zinc/vanadium batteries with a capacity of 125 mAh g−1 for 300 cycles at 5 A g−1. This finding demonstrates a low‐cost and practicable approach for realizing stable aqueous zinc‐ion batteries with an enlarged electrochemical stability window. A urea‐modified ternary aqueous electrolyte prepared at room temperature is proposed. The H‐bonds network between urea and water limits the free water activity to decrease side reactions. The reduction of urea forms an organic solid electrolyte interphase to regulate the Zn deposition on the anode. This low‐cost and practicable electrolyte enables high‐voltage aqueous zinc/vanadium batteries with enhanced capacity and stability.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202304791