Computing subdifferential limits of operators on Banach spaces

Let X , Y {X,Y} be real, infinite-dimensional Banach spaces. Let ℒ ⁢ ( X , Y ) {{\mathcal{L}}(X,Y)} be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ ℒ ⁢ ( X , Y ) {A\in{\mathcal{L}}(X,Y)} is to estimate the limit (which always exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied analysis 2023-12, Vol.29 (2), p.297-304
1. Verfasser: Rao, T. S. S. R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 2
container_start_page 297
container_title Journal of applied analysis
container_volume 29
creator Rao, T. S. S. R. K.
description Let X , Y {X,Y} be real, infinite-dimensional Banach spaces. Let ℒ ⁢ ( X , Y ) {{\mathcal{L}}(X,Y)} be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ ℒ ⁢ ( X , Y ) {A\in{\mathcal{L}}(X,Y)} is to estimate the limit (which always exists) lim t → 0 + ⁡ ∥ A + t ⁢ B ∥ - ∥ A ∥ t   for  ⁢ B ∈ ℒ ⁢ ( X , Y ) , \lim_{t\rightarrow 0^{+}}\frac{\lVert A+tB\rVert-\lVert A\rVert}{t}\quad\text{% for }B\in{\mathcal{L}}(X,Y), using the values of B on the state space S A = { τ ∈ ℒ ⁢ ( X , Y ) ∗ : τ ⁢ ( A ) = ∥ A ∥ , ∥ τ ∥ = 1 } . S_{A}=\bigl{\{}\tau\in{\mathcal{L}}(X,Y)^{\ast}:\tau(A)=\lVert A\rVert,\,% \lVert\tau\rVert=1\bigr{\}}. In this paper, we give several examples of Banach spaces, including the ℓ p {\ell^{p}} spaces (for 1 < p < ∞ {1
doi_str_mv 10.1515/jaa-2022-1036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2892128250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2892128250</sourcerecordid><originalsourceid>FETCH-LOGICAL-c265t-fb460016704a2a6dc353e757d30a0b1bbb95e44be1db9aaff62e27b9de1e67313</originalsourceid><addsrcrecordid>eNotkM9LxDAQhYMouK4evRc8RyeTJm0vgi7-ggUveg6TNtGWblOT9uB_b8t6mjfw8R58jF0LuBVKqLuOiCMgcgFSn7CNKHXFNZR4uuQcFdcVlOfsIqUOFkzrfMPud-EwzlM7fGVptk3rvYtumFrqs749tFPKgs_C6CJNIS7PkD3SQPV3lkaqXbpkZ5765K7-75Z9Pj997F75_v3lbfew5zVqNXFvcw0gdAE5Iemmlkq6QhWNBAIrrLWVcnlunWhsReS9RoeFrRonnC6kkFt2c-wdY_iZXZpMF-Y4LJMGywoFlqhgofiRqmNIKTpvxtgeKP4aAWZVZBZFZlVkVkXyD91oWZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2892128250</pqid></control><display><type>article</type><title>Computing subdifferential limits of operators on Banach spaces</title><source>Alma/SFX Local Collection</source><creator>Rao, T. S. S. R. K.</creator><creatorcontrib>Rao, T. S. S. R. K.</creatorcontrib><description>Let X , Y {X,Y} be real, infinite-dimensional Banach spaces. Let ℒ ⁢ ( X , Y ) {{\mathcal{L}}(X,Y)} be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ ℒ ⁢ ( X , Y ) {A\in{\mathcal{L}}(X,Y)} is to estimate the limit (which always exists) lim t → 0 + ⁡ ∥ A + t ⁢ B ∥ - ∥ A ∥ t   for  ⁢ B ∈ ℒ ⁢ ( X , Y ) , \lim_{t\rightarrow 0^{+}}\frac{\lVert A+tB\rVert-\lVert A\rVert}{t}\quad\text{% for }B\in{\mathcal{L}}(X,Y), using the values of B on the state space S A = { τ ∈ ℒ ⁢ ( X , Y ) ∗ : τ ⁢ ( A ) = ∥ A ∥ , ∥ τ ∥ = 1 } . S_{A}=\bigl{\{}\tau\in{\mathcal{L}}(X,Y)^{\ast}:\tau(A)=\lVert A\rVert,\,% \lVert\tau\rVert=1\bigr{\}}. In this paper, we give several examples of Banach spaces, including the ℓ p {\ell^{p}} spaces (for 1 &lt; p &lt; ∞ {1&lt;p&lt;\infty} ) where a more tangible estimate is possible, under additional hypotheses on A . We also use the notion of norm-weak upper-semi-continuity (usc, for short) of the preduality map to achieve this. Our results also show that the operator subdifferential limit is related to the corresponding subdifferential limit of the vectors in the range space, when A ∗ ∗ {A^{\ast\ast}} attains its norm.</description><identifier>ISSN: 1425-6908</identifier><identifier>EISSN: 1869-6082</identifier><identifier>DOI: 10.1515/jaa-2022-1036</identifier><language>eng</language><publisher>Berlin: Walter de Gruyter GmbH</publisher><subject>Banach spaces ; Operators (mathematics)</subject><ispartof>Journal of applied analysis, 2023-12, Vol.29 (2), p.297-304</ispartof><rights>2023 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c265t-fb460016704a2a6dc353e757d30a0b1bbb95e44be1db9aaff62e27b9de1e67313</citedby><cites>FETCH-LOGICAL-c265t-fb460016704a2a6dc353e757d30a0b1bbb95e44be1db9aaff62e27b9de1e67313</cites><orcidid>0000-0003-0599-9426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rao, T. S. S. R. K.</creatorcontrib><title>Computing subdifferential limits of operators on Banach spaces</title><title>Journal of applied analysis</title><description>Let X , Y {X,Y} be real, infinite-dimensional Banach spaces. Let ℒ ⁢ ( X , Y ) {{\mathcal{L}}(X,Y)} be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ ℒ ⁢ ( X , Y ) {A\in{\mathcal{L}}(X,Y)} is to estimate the limit (which always exists) lim t → 0 + ⁡ ∥ A + t ⁢ B ∥ - ∥ A ∥ t   for  ⁢ B ∈ ℒ ⁢ ( X , Y ) , \lim_{t\rightarrow 0^{+}}\frac{\lVert A+tB\rVert-\lVert A\rVert}{t}\quad\text{% for }B\in{\mathcal{L}}(X,Y), using the values of B on the state space S A = { τ ∈ ℒ ⁢ ( X , Y ) ∗ : τ ⁢ ( A ) = ∥ A ∥ , ∥ τ ∥ = 1 } . S_{A}=\bigl{\{}\tau\in{\mathcal{L}}(X,Y)^{\ast}:\tau(A)=\lVert A\rVert,\,% \lVert\tau\rVert=1\bigr{\}}. In this paper, we give several examples of Banach spaces, including the ℓ p {\ell^{p}} spaces (for 1 &lt; p &lt; ∞ {1&lt;p&lt;\infty} ) where a more tangible estimate is possible, under additional hypotheses on A . We also use the notion of norm-weak upper-semi-continuity (usc, for short) of the preduality map to achieve this. Our results also show that the operator subdifferential limit is related to the corresponding subdifferential limit of the vectors in the range space, when A ∗ ∗ {A^{\ast\ast}} attains its norm.</description><subject>Banach spaces</subject><subject>Operators (mathematics)</subject><issn>1425-6908</issn><issn>1869-6082</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNotkM9LxDAQhYMouK4evRc8RyeTJm0vgi7-ggUveg6TNtGWblOT9uB_b8t6mjfw8R58jF0LuBVKqLuOiCMgcgFSn7CNKHXFNZR4uuQcFdcVlOfsIqUOFkzrfMPud-EwzlM7fGVptk3rvYtumFrqs749tFPKgs_C6CJNIS7PkD3SQPV3lkaqXbpkZ5765K7-75Z9Pj997F75_v3lbfew5zVqNXFvcw0gdAE5Iemmlkq6QhWNBAIrrLWVcnlunWhsReS9RoeFrRonnC6kkFt2c-wdY_iZXZpMF-Y4LJMGywoFlqhgofiRqmNIKTpvxtgeKP4aAWZVZBZFZlVkVkXyD91oWZA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Rao, T. S. S. R. K.</creator><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-0599-9426</orcidid></search><sort><creationdate>20231201</creationdate><title>Computing subdifferential limits of operators on Banach spaces</title><author>Rao, T. S. S. R. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c265t-fb460016704a2a6dc353e757d30a0b1bbb95e44be1db9aaff62e27b9de1e67313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Banach spaces</topic><topic>Operators (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, T. S. S. R. K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of applied analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, T. S. S. R. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing subdifferential limits of operators on Banach spaces</atitle><jtitle>Journal of applied analysis</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>29</volume><issue>2</issue><spage>297</spage><epage>304</epage><pages>297-304</pages><issn>1425-6908</issn><eissn>1869-6082</eissn><abstract>Let X , Y {X,Y} be real, infinite-dimensional Banach spaces. Let ℒ ⁢ ( X , Y ) {{\mathcal{L}}(X,Y)} be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ ℒ ⁢ ( X , Y ) {A\in{\mathcal{L}}(X,Y)} is to estimate the limit (which always exists) lim t → 0 + ⁡ ∥ A + t ⁢ B ∥ - ∥ A ∥ t   for  ⁢ B ∈ ℒ ⁢ ( X , Y ) , \lim_{t\rightarrow 0^{+}}\frac{\lVert A+tB\rVert-\lVert A\rVert}{t}\quad\text{% for }B\in{\mathcal{L}}(X,Y), using the values of B on the state space S A = { τ ∈ ℒ ⁢ ( X , Y ) ∗ : τ ⁢ ( A ) = ∥ A ∥ , ∥ τ ∥ = 1 } . S_{A}=\bigl{\{}\tau\in{\mathcal{L}}(X,Y)^{\ast}:\tau(A)=\lVert A\rVert,\,% \lVert\tau\rVert=1\bigr{\}}. In this paper, we give several examples of Banach spaces, including the ℓ p {\ell^{p}} spaces (for 1 &lt; p &lt; ∞ {1&lt;p&lt;\infty} ) where a more tangible estimate is possible, under additional hypotheses on A . We also use the notion of norm-weak upper-semi-continuity (usc, for short) of the preduality map to achieve this. Our results also show that the operator subdifferential limit is related to the corresponding subdifferential limit of the vectors in the range space, when A ∗ ∗ {A^{\ast\ast}} attains its norm.</abstract><cop>Berlin</cop><pub>Walter de Gruyter GmbH</pub><doi>10.1515/jaa-2022-1036</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0599-9426</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1425-6908
ispartof Journal of applied analysis, 2023-12, Vol.29 (2), p.297-304
issn 1425-6908
1869-6082
language eng
recordid cdi_proquest_journals_2892128250
source Alma/SFX Local Collection
subjects Banach spaces
Operators (mathematics)
title Computing subdifferential limits of operators on Banach spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A54%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20subdifferential%20limits%20of%20operators%20on%20Banach%20spaces&rft.jtitle=Journal%20of%20applied%20analysis&rft.au=Rao,%20T.%20S.%20S.%20R.%20K.&rft.date=2023-12-01&rft.volume=29&rft.issue=2&rft.spage=297&rft.epage=304&rft.pages=297-304&rft.issn=1425-6908&rft.eissn=1869-6082&rft_id=info:doi/10.1515/jaa-2022-1036&rft_dat=%3Cproquest_cross%3E2892128250%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2892128250&rft_id=info:pmid/&rfr_iscdi=true