Computing subdifferential limits of operators on Banach spaces

Let X , Y {X,Y} be real, infinite-dimensional Banach spaces. Let ℒ ⁢ ( X , Y ) {{\mathcal{L}}(X,Y)} be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ ℒ ⁢ ( X , Y ) {A\in{\mathcal{L}}(X,Y)} is to estimate the limit (which always exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied analysis 2023-12, Vol.29 (2), p.297-304
1. Verfasser: Rao, T. S. S. R. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X , Y {X,Y} be real, infinite-dimensional Banach spaces. Let ℒ ⁢ ( X , Y ) {{\mathcal{L}}(X,Y)} be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ ℒ ⁢ ( X , Y ) {A\in{\mathcal{L}}(X,Y)} is to estimate the limit (which always exists) lim t → 0 + ⁡ ∥ A + t ⁢ B ∥ - ∥ A ∥ t   for  ⁢ B ∈ ℒ ⁢ ( X , Y ) , \lim_{t\rightarrow 0^{+}}\frac{\lVert A+tB\rVert-\lVert A\rVert}{t}\quad\text{% for }B\in{\mathcal{L}}(X,Y), using the values of B on the state space S A = { τ ∈ ℒ ⁢ ( X , Y ) ∗ : τ ⁢ ( A ) = ∥ A ∥ , ∥ τ ∥ = 1 } . S_{A}=\bigl{\{}\tau\in{\mathcal{L}}(X,Y)^{\ast}:\tau(A)=\lVert A\rVert,\,% \lVert\tau\rVert=1\bigr{\}}. In this paper, we give several examples of Banach spaces, including the ℓ p {\ell^{p}} spaces (for 1 < p < ∞ {1
ISSN:1425-6908
1869-6082
DOI:10.1515/jaa-2022-1036