Computing subdifferential limits of operators on Banach spaces
Let X , Y {X,Y} be real, infinite-dimensional Banach spaces. Let ℒ ( X , Y ) {{\mathcal{L}}(X,Y)} be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at A ∈ ℒ ( X , Y ) {A\in{\mathcal{L}}(X,Y)} is to estimate the limit (which always exis...
Gespeichert in:
Veröffentlicht in: | Journal of applied analysis 2023-12, Vol.29 (2), p.297-304 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
,
Y
{X,Y}
be real, infinite-dimensional Banach spaces. Let
ℒ
(
X
,
Y
)
{{\mathcal{L}}(X,Y)}
be the space of bounded operators. An important aspect of understanding differentiability of the operator norm at
A
∈
ℒ
(
X
,
Y
)
{A\in{\mathcal{L}}(X,Y)}
is to estimate the limit
(which always exists)
lim
t
→
0
+
∥
A
+
t
B
∥
-
∥
A
∥
t
for
B
∈
ℒ
(
X
,
Y
)
,
\lim_{t\rightarrow 0^{+}}\frac{\lVert A+tB\rVert-\lVert A\rVert}{t}\quad\text{%
for }B\in{\mathcal{L}}(X,Y),
using the values of
B
on the state space
S
A
=
{
τ
∈
ℒ
(
X
,
Y
)
∗
:
τ
(
A
)
=
∥
A
∥
,
∥
τ
∥
=
1
}
.
S_{A}=\bigl{\{}\tau\in{\mathcal{L}}(X,Y)^{\ast}:\tau(A)=\lVert A\rVert,\,%
\lVert\tau\rVert=1\bigr{\}}.
In this paper, we give several examples of Banach spaces, including the
ℓ
p
{\ell^{p}}
spaces
(for
1
<
p
<
∞
{1 |
---|---|
ISSN: | 1425-6908 1869-6082 |
DOI: | 10.1515/jaa-2022-1036 |