Heterointerface of all-alkynyl-protected Au28 nanoclusters anchored on NiFe-LDHs boosts oxygen evolution reaction: a case to unravel ligand effect

Ultrasmall Au nanoclusters have been proven to effectively enhance the catalytic performance of NiFe layered double hydroxides (NiFe-LDHs) toward oxygen evolution reaction (OER), yet the surface ligand effect of the Au nanoclusters still remains elusive. Herein, a systematic study is reported to exa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rare metals 2023-12, Vol.42 (12), p.4029-4038
Hauptverfasser: Shen, Quan-Li, Shen, Long-Yun, Chen, Le-Yi, Qin, Lu-Bing, Liu, Yong-Gang, Bedford, Nicholas M., Ciucci, Francesco, Tang, Zheng-Hua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrasmall Au nanoclusters have been proven to effectively enhance the catalytic performance of NiFe layered double hydroxides (NiFe-LDHs) toward oxygen evolution reaction (OER), yet the surface ligand effect of the Au nanoclusters still remains elusive. Herein, a systematic study is reported to examine the OER performance of NiFe-LDHs supported atom-precise all alkynyl-protected [Au 28 ( t BuC≡C) 17 ] − nanoclusters (Au 28 -Alkynyl in short) and thiolate-protected Au 28 (TBBT) 20 (TBBT = 4-tert-butylbenzenethiol) counterparts (Au 28 -Thiolate in short). The Au 28 -Alkynyl cluster has characteristic absorbance feature, and its composition is verified by mass spectrometry. It possesses a drastically different structure from the reported mixed ligand protected Au 28 nanoclusters. Interestingly, the NiFe-LDHs loaded with Au 28 -Alkynyl exhibited a superior OER performance than the sample loaded with Au 28 -Thiolate under the same conditions, evidenced by a smaller overpotential of 205 mV at the current density of 10 mA·cm −2 and a lower Tafel slope value of 41.0 mV·dec −1 in 1 mol·L −1 KOH. Such excellent performance is attributed to the interfaces created between the NiFe-LDHs and the Au nanoclusters, as density functional theory calculations reveal that more significant charge transfer occurs in Au 28 -Alkynyl/NiFe-LDHs catalyst, and more importantly, the energy barrier of the potential-determining step in the OER process for Au 28 -Alkynyl/NiFe-LDHs is much lower than that of Au 28 -Thiolate/NiFe-LDHs hence favors the electrocatalytic reaction. Graphical abstract
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-023-02438-2