Credit-Risk Prediction Model Using Hybrid Deep—Machine-Learning Based Algorithms

Credit-risk prediction is one of the challenging tasks in the banking industry. In this study, a hybrid convolutional neural network—support vector machine/random forest/decision tree (CNN—SVM/RF/DT) model has been proposed for efficient credit-risk prediction. We proposed four classifiers to develo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific programming 2023-11, Vol.2023, p.1-13
Hauptverfasser: Melese, Tamiru, Berhane, Tesfahun, Mohammed, Abdu, Walelgn, Assaye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Credit-risk prediction is one of the challenging tasks in the banking industry. In this study, a hybrid convolutional neural network—support vector machine/random forest/decision tree (CNN—SVM/RF/DT) model has been proposed for efficient credit-risk prediction. We proposed four classifiers to develop the model. A fully connected layer with soft-max trained using an end-to-end process makes up the first classifier and by deleting the final fully connected with soft-max layer, the other three classifiers—a SVM, RF, and DT classifier stacked after the flattening layer. Different parameter values were considered and fine-tuned throughout testing to select appropriate parameters. In accordance with the experimental findings, a fully connected CNN and a hybrid CNN with SVM, DT, and RF, respectively, achieved a prediction performance of 86.70%, 98.60%, 96.90%, and 95.50%. According to the results, our suggested hybrid method exceeds the fully connected CNN in its ability to predict credit risk.
ISSN:1058-9244
1875-919X
DOI:10.1155/2023/6675425