An Automatic and Robust Visual SLAM Method for Intra-Abdominal Environment Reconstruction

Three-dimensional (3D) surface reconstruction is used to solve the problem of the narrow field of view in laparoscopy. It can provide surgeons or computer-assisted surgery systems with real-time complete internal abdominal anatomy. However, rapid changes in image depth, less texture, and specular re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics 2023-11, Vol.27 (6), p.1216-1229
Hauptverfasser: Wei, Guodong, Shi, Weili, Feng, Guanyuan, Ao, Yu, Miao, Yu, He, Wei, Chen, Tao, Wang, Yao, Ji, Bai, Jiang, Zhengang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional (3D) surface reconstruction is used to solve the problem of the narrow field of view in laparoscopy. It can provide surgeons or computer-assisted surgery systems with real-time complete internal abdominal anatomy. However, rapid changes in image depth, less texture, and specular reflection pose a challenge for the reconstruction. It is difficult to stably complete the reconstruction process using feature-based simultaneous localization and mapping (SLAM) method. This paper proposes a robust laparoscopic 3D surface reconstruction method using SLAM, which can automatically select appropriate parameters for stereo matching and robustly find matching point pairs for laparoscope motion estimation. The changing trend of disparity maps is used to predict stereo matching parameters to improve the quality of the disparity map. Feature patch extraction and tracking are selected to replace feature point extraction and matching in motion estimation, which reduces its failure and interruption in feature-based SLAM. The proposed feature patch matching method is suitable for parallel computing, which can improve its computing speed. Evaluation results on public in vivo and ex vivo porcine abdominal video data show the efficiency and robustness of our 3D surface reconstruction approach.
ISSN:1343-0130
1883-8014
DOI:10.20965/jaciii.2023.p1216