On the Topological Entropy of Saturated Sets for Amenable Group Actions
Let ( X , G ) be a G -action topological system, where G is a countable infinite discrete amenable group and X a compact metric space. We prove a variational principle for topological entropy of saturated sets for systems which have the specification property and uniform separation property. We sho...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2023-12, Vol.35 (4), p.2873-2904 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (
X
,
G
) be a
G
-action topological system, where
G
is a countable infinite discrete amenable group and
X
a compact metric space. We prove a variational principle for topological entropy of saturated sets for systems which have the specification property and uniform separation property. We show that certain algebraic actions satisfy these two conditions. We give an application in multifractal analysis. |
---|---|
ISSN: | 1040-7294 1572-9222 |
DOI: | 10.1007/s10884-023-10302-1 |