On the Topological Entropy of Saturated Sets for Amenable Group Actions

Let ( X ,  G ) be a G -action topological system, where G is a countable infinite discrete amenable group and X a compact metric space. We prove a variational principle for topological entropy of saturated sets for systems which have the specification property and uniform separation property. We sho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2023-12, Vol.35 (4), p.2873-2904
Hauptverfasser: Ren, Xiankun, Tian, Xueting, Zhou, Yunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( X ,  G ) be a G -action topological system, where G is a countable infinite discrete amenable group and X a compact metric space. We prove a variational principle for topological entropy of saturated sets for systems which have the specification property and uniform separation property. We show that certain algebraic actions satisfy these two conditions. We give an application in multifractal analysis.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-023-10302-1