Fermi surface symmetric mass generation: a quantum Monte-Carlo study
The symmetric mass generation (SMG) phase is an insulator in which a single-particle gap is intrinsically opened by the interaction, without involving symmetry spontaneously breaking or topological order. Here, we perform unbiased quantum Monte-Carlo simulation and systematically investigate a bilay...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The symmetric mass generation (SMG) phase is an insulator in which a single-particle gap is intrinsically opened by the interaction, without involving symmetry spontaneously breaking or topological order. Here, we perform unbiased quantum Monte-Carlo simulation and systematically investigate a bilayer fermionic model hosting Fermi surface SMG in the strongly interacting regime. With increasing interaction strength, the model undergoes a quantum phase transition from an exciton insulator to an SMG phase, belonging to the (2+1)-dimensional O(4) universality class. We access the spectral properties of the SMG phase, resembling a Mott insulating phase with relatively flat dispersion and pronounced spectral broadening. The dispersion of Green's function zeros is extracted from spectral function, featuring a surface at zero frequency precisely located at the original non-interacting Fermi surface, which constitutes a hallmark of the Fermi surface SMG phase. The bilayer model we study is potentially relevant to the newly discovered high-\(T_c\) superconductor \(\rm{La}_3 \rm{Ni}_2 \rm{O}_7\). Our results in SMG phase qualitatively capture the salient features of spectral function unveiled in recent ARPES experiments, shedding new insight on the underlying physics of \(\rm{La}_3 \rm{Ni}_2 \rm{O}_7\). |
---|---|
ISSN: | 2331-8422 |