Stability Analysis of Several Time Discrete Schemes for Allen–Cahn and Cahn–Hilliard Equations

In this paper, the stability of several time discrete schemes for Allen–Cahn and Cahn–Hilliard equations and an error estimate for Cahn–Hilliard equation are analyzed. In order to discuss the Allen–Cahn and Cahn–Hilliard equations, a skew symmetric positive operator is defined, where in Allen–Cahn e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2023-10, Vol.63 (10), p.1773-1786
Hauptverfasser: He, Qiaoling, Yan, Junping, Abuduwaili, Abudurexiti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the stability of several time discrete schemes for Allen–Cahn and Cahn–Hilliard equations and an error estimate for Cahn–Hilliard equation are analyzed. In order to discuss the Allen–Cahn and Cahn–Hilliard equations, a skew symmetric positive operator is defined, where in Allen–Cahn equation and in Cahn–Hilliard equation. We analyze stabilities of some schemes for the Allen–Cahn and the Cahn–Hilliard equation. The error estimates of Cahn–Hilliard equation are based on fully discrete scheme, its main idea is to use the finite element method to discretize in space, and then use two approximate results of the elliptic projection operator to analyze. Finally, we numerically verify convergence rates of this scheme.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542523100044