A Novel Uniform Numerical Approach to Solve a Singularly Perturbed Volterra Integro-Differential Equation

In this paper, the initial value problem for the second order singularly perturbed Volterra integro-differential equation is considered. To solve this problem, a finite difference scheme is constructed, which based on the method of integral identities using interpolating quadrature rules with remain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mathematics and mathematical physics 2023-10, Vol.63 (10), p.1800-1816
Hauptverfasser: Cakir, M., Cimen, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the initial value problem for the second order singularly perturbed Volterra integro-differential equation is considered. To solve this problem, a finite difference scheme is constructed, which based on the method of integral identities using interpolating quadrature rules with remainder terms in integral form. As a result of the error analysis, it is proved that the method is first-order convergent uniformly with respect to the perturbation parameter in the discrete maximum norm. Numerical experiments supporting the theoretical results are also presented.
ISSN:0965-5425
1555-6662
DOI:10.1134/S0965542523100020