Adsorption of Norfloxacin by Titanium-Doped Mesoporous Bioactive Glass: Kinetics, Isotherms, Thermodynamic and Regenerable Studies

A series of Titanium-doped mesoporous bioactive glass with different Si-Ca ratios (MBG-Ti-1– MBG-Ti-5) were prepared by the sol-gel method. These materials were used to adsorb Norfloxacin (NOR) pollutant from aqueous solution. The morphology, microstructure and chemical properties of MBG-Ti-3 were c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glass physics and chemistry 2023-10, Vol.49 (5), p.431-441
Hauptverfasser: Li, Liying, Kang, Song, Bu, Yanbin, Zhou, Qingzhe, Feng, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of Titanium-doped mesoporous bioactive glass with different Si-Ca ratios (MBG-Ti-1– MBG-Ti-5) were prepared by the sol-gel method. These materials were used to adsorb Norfloxacin (NOR) pollutant from aqueous solution. The morphology, microstructure and chemical properties of MBG-Ti-3 were characterized by transmission electron microscopy (TEM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The N 2 adsorption-desorption isotherm and pore size distribution of MBG-Ti-3 were investigated by the Brunauer–Emmett–Teller (BET) method and Barret–Joyner–Halenda (BJH) method. The specific surface of MBG-Ti-3 was 126.68 m 2 /g and the pore size was about 15 nm. The effect of time, initial concentration, pH and temperature on the adsorption of NOR were investigated. The maximum adsorption efficiency was 68% at 30°C, pH 8.0. Moreover, adsorption of NOR onto MBG-Ti-3 could be well fitted with the pseudo-first-order model and the pseudo-second-order model. Furthermore, adsorption was spontaneous, exothermic process of reduced entropy by analyzing thermodynamic model. Through the analysis of adsorption model, plausible adsorption mechanism was proposed. MBG-Ti-3 exhibited better adsorption efficiency after recycle 3 times. Additionally, bioactive glass was eco-friendly attribute to biological suitability which could not cause secondly pollution for aquatic environment. As an environmentally friendly adsorbent, Titanium-doped mesoporous bioactive glass showed promising potential application in NOR antibiotics removal from aquatic environment.
ISSN:1087-6596
1608-313X
DOI:10.1134/S1087659623600473