Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models

A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2023-08, Vol.11 (8), p.2461
Hauptverfasser: Lu, Tong, Hou, Sizu, Xu, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 2461
container_title Processes
container_volume 11
creator Lu, Tong
Hou, Sizu
Xu, Yan
description A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads.
doi_str_mv 10.3390/pr11082461
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2890440127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762547428</galeid><sourcerecordid>A762547428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1b8368a4535ee8c2bfacf556832a2bf7cab87f967fb7ade2206834eb351ca18d3</originalsourceid><addsrcrecordid>eNpNUcFOwzAMjRBITGMXviASN6SOJmmb9DjKBpOGOGzjWqWpUzq1TUkypP09QUMC-2D7-T1bshG6JfGcsTx-GC0hsaBJRi7QhFLKo5wTfvkvv0Yz5w5xsJwwkWYT1O87b2W0_TDWRzuwPd4YWeOVsaCk8-3QYG0sLo7Omx5stIEv6PB68NBY6aHGywFsc8Lbk_PQO_woXQDNgAvTj8a1HvD77mmLX00NnbtBV1p2Dma_cYr2q-WueIk2b8_rYrGJFM2Zj0glWCZkkrIUQChaaal0mmaCURkKrmQluM4zrisua6A0Dq0EKpYSJYmo2RTdneeO1nwewfnyYI52CCtLKvI4SWJCeWDNz6xGdlC2gzbhFCp4DX2rzAC6DfiCZzRNeEJFENyfBcoa5yzocrRtL-2pJHH584Ly7wXsG2u6eMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890440127</pqid></control><display><type>article</type><title>Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Lu, Tong ; Hou, Sizu ; Xu, Yan</creator><creatorcontrib>Lu, Tong ; Hou, Sizu ; Xu, Yan</creatorcontrib><description>A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11082461</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial neural networks ; Carbon ; Case studies ; Clustering ; Comparative analysis ; Correlation analysis ; Data compression ; Decomposition ; Embedding ; Emissions ; Feature selection ; Forecasting ; Integrated energy systems ; Long short-term memory ; Methods ; Missing data ; Neural networks ; Noise reduction ; Optimization ; Particle swarm optimization ; Regression models ; Stochasticity ; Support vector machines ; Time series</subject><ispartof>Processes, 2023-08, Vol.11 (8), p.2461</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-1b8368a4535ee8c2bfacf556832a2bf7cab87f967fb7ade2206834eb351ca18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lu, Tong</creatorcontrib><creatorcontrib>Hou, Sizu</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><title>Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models</title><title>Processes</title><description>A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Carbon</subject><subject>Case studies</subject><subject>Clustering</subject><subject>Comparative analysis</subject><subject>Correlation analysis</subject><subject>Data compression</subject><subject>Decomposition</subject><subject>Embedding</subject><subject>Emissions</subject><subject>Feature selection</subject><subject>Forecasting</subject><subject>Integrated energy systems</subject><subject>Long short-term memory</subject><subject>Methods</subject><subject>Missing data</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Regression models</subject><subject>Stochasticity</subject><subject>Support vector machines</subject><subject>Time series</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUcFOwzAMjRBITGMXviASN6SOJmmb9DjKBpOGOGzjWqWpUzq1TUkypP09QUMC-2D7-T1bshG6JfGcsTx-GC0hsaBJRi7QhFLKo5wTfvkvv0Yz5w5xsJwwkWYT1O87b2W0_TDWRzuwPd4YWeOVsaCk8-3QYG0sLo7Omx5stIEv6PB68NBY6aHGywFsc8Lbk_PQO_woXQDNgAvTj8a1HvD77mmLX00NnbtBV1p2Dma_cYr2q-WueIk2b8_rYrGJFM2Zj0glWCZkkrIUQChaaal0mmaCURkKrmQluM4zrisua6A0Dq0EKpYSJYmo2RTdneeO1nwewfnyYI52CCtLKvI4SWJCeWDNz6xGdlC2gzbhFCp4DX2rzAC6DfiCZzRNeEJFENyfBcoa5yzocrRtL-2pJHH584Ly7wXsG2u6eMM</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Lu, Tong</creator><creator>Hou, Sizu</creator><creator>Xu, Yan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230801</creationdate><title>Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models</title><author>Lu, Tong ; Hou, Sizu ; Xu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1b8368a4535ee8c2bfacf556832a2bf7cab87f967fb7ade2206834eb351ca18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Carbon</topic><topic>Case studies</topic><topic>Clustering</topic><topic>Comparative analysis</topic><topic>Correlation analysis</topic><topic>Data compression</topic><topic>Decomposition</topic><topic>Embedding</topic><topic>Emissions</topic><topic>Feature selection</topic><topic>Forecasting</topic><topic>Integrated energy systems</topic><topic>Long short-term memory</topic><topic>Methods</topic><topic>Missing data</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Regression models</topic><topic>Stochasticity</topic><topic>Support vector machines</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Tong</creatorcontrib><creatorcontrib>Hou, Sizu</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Tong</au><au>Hou, Sizu</au><au>Xu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models</atitle><jtitle>Processes</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>11</volume><issue>8</issue><spage>2461</spage><pages>2461-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11082461</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2023-08, Vol.11 (8), p.2461
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2890440127
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Accuracy
Algorithms
Analysis
Artificial neural networks
Carbon
Case studies
Clustering
Comparative analysis
Correlation analysis
Data compression
Decomposition
Embedding
Emissions
Feature selection
Forecasting
Integrated energy systems
Long short-term memory
Methods
Missing data
Neural networks
Noise reduction
Optimization
Particle swarm optimization
Regression models
Stochasticity
Support vector machines
Time series
title Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Short-Term%20Load%20Forecasting%20for%20Customer-Level%20Integrated%20Energy%20Systems%20Based%20on%20Composite%20VTDS%20Models&rft.jtitle=Processes&rft.au=Lu,%20Tong&rft.date=2023-08-01&rft.volume=11&rft.issue=8&rft.spage=2461&rft.pages=2461-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11082461&rft_dat=%3Cgale_proqu%3EA762547428%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890440127&rft_id=info:pmid/&rft_galeid=A762547428&rfr_iscdi=true