Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models
A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (V...
Gespeichert in:
Veröffentlicht in: | Processes 2023-08, Vol.11 (8), p.2461 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 2461 |
container_title | Processes |
container_volume | 11 |
creator | Lu, Tong Hou, Sizu Xu, Yan |
description | A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads. |
doi_str_mv | 10.3390/pr11082461 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2890440127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A762547428</galeid><sourcerecordid>A762547428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-1b8368a4535ee8c2bfacf556832a2bf7cab87f967fb7ade2206834eb351ca18d3</originalsourceid><addsrcrecordid>eNpNUcFOwzAMjRBITGMXviASN6SOJmmb9DjKBpOGOGzjWqWpUzq1TUkypP09QUMC-2D7-T1bshG6JfGcsTx-GC0hsaBJRi7QhFLKo5wTfvkvv0Yz5w5xsJwwkWYT1O87b2W0_TDWRzuwPd4YWeOVsaCk8-3QYG0sLo7Omx5stIEv6PB68NBY6aHGywFsc8Lbk_PQO_woXQDNgAvTj8a1HvD77mmLX00NnbtBV1p2Dma_cYr2q-WueIk2b8_rYrGJFM2Zj0glWCZkkrIUQChaaal0mmaCURkKrmQluM4zrisua6A0Dq0EKpYSJYmo2RTdneeO1nwewfnyYI52CCtLKvI4SWJCeWDNz6xGdlC2gzbhFCp4DX2rzAC6DfiCZzRNeEJFENyfBcoa5yzocrRtL-2pJHH584Ly7wXsG2u6eMM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890440127</pqid></control><display><type>article</type><title>Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Lu, Tong ; Hou, Sizu ; Xu, Yan</creator><creatorcontrib>Lu, Tong ; Hou, Sizu ; Xu, Yan</creatorcontrib><description>A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr11082461</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial neural networks ; Carbon ; Case studies ; Clustering ; Comparative analysis ; Correlation analysis ; Data compression ; Decomposition ; Embedding ; Emissions ; Feature selection ; Forecasting ; Integrated energy systems ; Long short-term memory ; Methods ; Missing data ; Neural networks ; Noise reduction ; Optimization ; Particle swarm optimization ; Regression models ; Stochasticity ; Support vector machines ; Time series</subject><ispartof>Processes, 2023-08, Vol.11 (8), p.2461</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c293t-1b8368a4535ee8c2bfacf556832a2bf7cab87f967fb7ade2206834eb351ca18d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lu, Tong</creatorcontrib><creatorcontrib>Hou, Sizu</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><title>Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models</title><title>Processes</title><description>A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial neural networks</subject><subject>Carbon</subject><subject>Case studies</subject><subject>Clustering</subject><subject>Comparative analysis</subject><subject>Correlation analysis</subject><subject>Data compression</subject><subject>Decomposition</subject><subject>Embedding</subject><subject>Emissions</subject><subject>Feature selection</subject><subject>Forecasting</subject><subject>Integrated energy systems</subject><subject>Long short-term memory</subject><subject>Methods</subject><subject>Missing data</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Regression models</subject><subject>Stochasticity</subject><subject>Support vector machines</subject><subject>Time series</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUcFOwzAMjRBITGMXviASN6SOJmmb9DjKBpOGOGzjWqWpUzq1TUkypP09QUMC-2D7-T1bshG6JfGcsTx-GC0hsaBJRi7QhFLKo5wTfvkvv0Yz5w5xsJwwkWYT1O87b2W0_TDWRzuwPd4YWeOVsaCk8-3QYG0sLo7Omx5stIEv6PB68NBY6aHGywFsc8Lbk_PQO_woXQDNgAvTj8a1HvD77mmLX00NnbtBV1p2Dma_cYr2q-WueIk2b8_rYrGJFM2Zj0glWCZkkrIUQChaaal0mmaCURkKrmQluM4zrisua6A0Dq0EKpYSJYmo2RTdneeO1nwewfnyYI52CCtLKvI4SWJCeWDNz6xGdlC2gzbhFCp4DX2rzAC6DfiCZzRNeEJFENyfBcoa5yzocrRtL-2pJHH584Ly7wXsG2u6eMM</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Lu, Tong</creator><creator>Hou, Sizu</creator><creator>Xu, Yan</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20230801</creationdate><title>Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models</title><author>Lu, Tong ; Hou, Sizu ; Xu, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-1b8368a4535ee8c2bfacf556832a2bf7cab87f967fb7ade2206834eb351ca18d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial neural networks</topic><topic>Carbon</topic><topic>Case studies</topic><topic>Clustering</topic><topic>Comparative analysis</topic><topic>Correlation analysis</topic><topic>Data compression</topic><topic>Decomposition</topic><topic>Embedding</topic><topic>Emissions</topic><topic>Feature selection</topic><topic>Forecasting</topic><topic>Integrated energy systems</topic><topic>Long short-term memory</topic><topic>Methods</topic><topic>Missing data</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Regression models</topic><topic>Stochasticity</topic><topic>Support vector machines</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Tong</creatorcontrib><creatorcontrib>Hou, Sizu</creatorcontrib><creatorcontrib>Xu, Yan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Tong</au><au>Hou, Sizu</au><au>Xu, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models</atitle><jtitle>Processes</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>11</volume><issue>8</issue><spage>2461</spage><pages>2461-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr11082461</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2023-08, Vol.11 (8), p.2461 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2890440127 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Accuracy Algorithms Analysis Artificial neural networks Carbon Case studies Clustering Comparative analysis Correlation analysis Data compression Decomposition Embedding Emissions Feature selection Forecasting Integrated energy systems Long short-term memory Methods Missing data Neural networks Noise reduction Optimization Particle swarm optimization Regression models Stochasticity Support vector machines Time series |
title | Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A40%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-Short-Term%20Load%20Forecasting%20for%20Customer-Level%20Integrated%20Energy%20Systems%20Based%20on%20Composite%20VTDS%20Models&rft.jtitle=Processes&rft.au=Lu,%20Tong&rft.date=2023-08-01&rft.volume=11&rft.issue=8&rft.spage=2461&rft.pages=2461-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr11082461&rft_dat=%3Cgale_proqu%3EA762547428%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890440127&rft_id=info:pmid/&rft_galeid=A762547428&rfr_iscdi=true |