Ultra-Short-Term Load Forecasting for Customer-Level Integrated Energy Systems Based on Composite VTDS Models
A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (V...
Gespeichert in:
Veröffentlicht in: | Processes 2023-08, Vol.11 (8), p.2461 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method is proposed to address the challenging issue of load prediction in user-level integrated energy systems (IESs) using a composite VTDS model. Firstly, an IES multi-dimensional load time series is decomposed into multiple intrinsic mode functions (IMFs) using variational mode decomposition (VMD). Then, each IMF, along with other influential features, is subjected to data dimensionality reduction and clustering denoising using t-distributed stochastic neighbor embedding (t-SNE) and fast density-based spatial clustering of applications with noise (FDBSCAN) to perform major feature selection. Subsequently, the reduced and denoised data are reconstructed, and a time-aware long short-term memory (T-LSTM) artificial neural network is employed to fill in missing data by incorporating time interval information. Finally, the selected multi-factor load time series is used as input into a support vector regression (SVR) model optimized using the quantum particle swarm optimization (QPSO) algorithm for load prediction. Using measured load data from a specific user-level IES at the Tempe campus of Arizona State University, USA, as a case study, a comparative analysis between the VTDS method and other approaches is conducted. The results demonstrate that the method proposed in this study achieved higher accuracy in short-term forecasting of the IES’s multiple loads. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr11082461 |