Minimax optimal high‐dimensional classification using deep neural networks
High‐dimensional classification is a fundamentally important research problem in high‐dimensional data analysis. In this paper, we derive a nonasymptotic rate for the minimax excess misclassification risk when feature dimension exponentially diverges with the sample size and the Bayes classifier pos...
Gespeichert in:
Veröffentlicht in: | Stat (International Statistical Institute) 2022-12, Vol.11 (1), p.n/a |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | High‐dimensional classification is a fundamentally important research problem in high‐dimensional data analysis. In this paper, we derive a nonasymptotic rate for the minimax excess misclassification risk when feature dimension exponentially diverges with the sample size and the Bayes classifier possesses a complicated modular structure. We also show that classifiers based on deep neural networks can attain the above rate, hence, are minimax optimal. |
---|---|
ISSN: | 2049-1573 2049-1573 |
DOI: | 10.1002/sta4.482 |