Minimax optimal high‐dimensional classification using deep neural networks

High‐dimensional classification is a fundamentally important research problem in high‐dimensional data analysis. In this paper, we derive a nonasymptotic rate for the minimax excess misclassification risk when feature dimension exponentially diverges with the sample size and the Bayes classifier pos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2022-12, Vol.11 (1), p.n/a
Hauptverfasser: Wang, Shuoyang, Shang, Zuofeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High‐dimensional classification is a fundamentally important research problem in high‐dimensional data analysis. In this paper, we derive a nonasymptotic rate for the minimax excess misclassification risk when feature dimension exponentially diverges with the sample size and the Bayes classifier possesses a complicated modular structure. We also show that classifiers based on deep neural networks can attain the above rate, hence, are minimax optimal.
ISSN:2049-1573
2049-1573
DOI:10.1002/sta4.482