A note on the convergence of lift zonoids of measures

The lift zonoid is a convenient representation of an integrable measure by a convex set in a higher‐dimensional space. It is known that, under appropriate conditions, a uniformly integrable sequence of measures converges weakly if and only if the corresponding sequence of lift zonoids converges in t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2022, Vol.11 (1), p.n/a
Hauptverfasser: Hendrych, František, Nagy, Stanislav
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lift zonoid is a convenient representation of an integrable measure by a convex set in a higher‐dimensional space. It is known that, under appropriate conditions, a uniformly integrable sequence of measures converges weakly if and only if the corresponding sequence of lift zonoids converges in the Hausdorff metric. We provide a new proof of this essential result. Our proof technique allows us to eliminate the unnecessary conditions previously considered in the literature. As a by‐product, we obtain a characterization of uniform integrability, and a simple sufficient condition for tightness, of a sequence of integrable measures in terms of their lift zonoids.
ISSN:2049-1573
2049-1573
DOI:10.1002/sta4.453