A multivariate normal approximation for the Dirichlet density and some applications

In this short note, we prove an asymptotic expansion for the ratio of the Dirichlet density to the multivariate normal density with the same mean and covariance matrix. The expansion is then used to derive an upper bound on the total variation between the corresponding probability measures and reder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stat (International Statistical Institute) 2022-12, Vol.11 (1), p.n/a
1. Verfasser: Ouimet, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this short note, we prove an asymptotic expansion for the ratio of the Dirichlet density to the multivariate normal density with the same mean and covariance matrix. The expansion is then used to derive an upper bound on the total variation between the corresponding probability measures and rederive the asymptotic variance of the Dirichlet kernel estimators introduced by Aitchison and Lauder (1985) and studied theoretically in Ouimet (2020). Another potential application related to the asymptotic equivalence between the Gaussian variance regression problem and the Gaussian white noise problem is briefly mentioned but left open for future research.
ISSN:2049-1573
2049-1573
DOI:10.1002/sta4.410