Prehistoric human occupation and adaptation on the hinterland of the Tibetan Plateau in the Early Holocene
The occupation process and survival strategies of prehistoric humans on the Tibetan Plateau are important scientific questions for understanding human adaptation to extreme high-altitude environments. Here, we report a newly discovered microlithic site at Daiqu (DQ) in the Tongtian River basin of th...
Gespeichert in:
Veröffentlicht in: | Progress in physical geography 2023-12, Vol.47 (6), p.931-949 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The occupation process and survival strategies of prehistoric humans on the Tibetan Plateau are important scientific questions for understanding human adaptation to extreme high-altitude environments. Here, we report a newly discovered microlithic site at Daiqu (DQ) in the Tongtian River basin of the central-eastern plateau. We collected 239 lithic artifacts from the DQ site for typological analysis. OSL and AMS14C dating samples were collected from the human active layer. Lipid residues from hearth sediments were analyzed, and we simulated and assessed environmental extremity and route accessibility for the site. Dating results suggest that the stable sedimentary layers began to form around 10.96 ± 0.56 ka BP at the DQ site. Human activity at DQ as early as 9271 ± 143 cal a BP, making it the earliest reported Holocene site with accurate stratigraphic dating on the plateau hinterland to date. Hearths and lithic artifacts indicate that the DQ site was a frequently used seasonal hunting camp, where quality lithic raw material was obtained and microliths processed. Prehistoric humans occupying the site relied on non-ruminant terrestrial animals as food resources. The DQ site is ideally situated to serve as a transit station for hunter-gatherers as they migrated between high and low elevations. Ameliorating Holocene climate promoted prehistoric human exploration of more environmentally extreme areas. |
---|---|
ISSN: | 0309-1333 1477-0296 |
DOI: | 10.1177/03091333231197168 |