On the corank of the fine Selmer group of an elliptic curve over a Zp-extension
Let p be an odd prime and F ∞ be a Z p -extension of a number field F . Given an elliptic curve E over F , we study the structure of the fine Selmer group over F ∞ . It is shown that under certain conditions, the fine Selmer group is a cofinitely generated module over Z p and furthermore, we obtain...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2023-12, Vol.62 (4), p.1023-1035 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
p
be an odd prime and
F
∞
be a
Z
p
-extension of a number field
F
. Given an elliptic curve
E
over
F
, we study the structure of the
fine Selmer group
over
F
∞
. It is shown that under certain conditions, the fine Selmer group is a cofinitely generated module over
Z
p
and furthermore, we obtain an upper bound for its corank (i.e. the
λ
-invariant), in terms of various local and global invariants. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-023-00734-0 |