On the corank of the fine Selmer group of an elliptic curve over a Zp-extension

Let p be an odd prime and F ∞ be a Z p -extension of a number field F . Given an elliptic curve E over F , we study the structure of the fine Selmer group over F ∞ . It is shown that under certain conditions, the fine Selmer group is a cofinitely generated module over Z p and furthermore, we obtain...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2023-12, Vol.62 (4), p.1023-1035
1. Verfasser: Ray, Anwesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let p be an odd prime and F ∞ be a Z p -extension of a number field F . Given an elliptic curve E over F , we study the structure of the fine Selmer group over F ∞ . It is shown that under certain conditions, the fine Selmer group is a cofinitely generated module over Z p and furthermore, we obtain an upper bound for its corank (i.e. the λ -invariant), in terms of various local and global invariants.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-023-00734-0