Geometric Aspects of Young Integral: Decomposition of Flows
In this paper we study geometric aspects of dynamics generated by Young differential equations (YDE) driven by α -Hölder trajectories with α ∈ ( 1 / 2 , 1 ) . We present a number of properties and geometrical constructions in this context: Young Itô geometrical formula, horizontal lift in principal...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2023-12, Vol.20 (6), Article 335 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study geometric aspects of dynamics generated by Young differential equations (YDE) driven by
α
-Hölder trajectories with
α
∈
(
1
/
2
,
1
)
. We present a number of properties and geometrical constructions in this context: Young Itô geometrical formula, horizontal lift in principal fibre bundles, parallel transport, among others. Our main application here is a geometrical decomposition of flows generated by YDEs according to diffeomorphisms generated by complementary distributions (integrable or not). The proof of existence of this decomposition is based on an Itô-Wentzel type formula for Young integration along
α
-Hölder paths proved by Castrequini and Catuogno (Chaos Solitons Fractals, 2022). |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-023-02539-3 |