Geometric Aspects of Young Integral: Decomposition of Flows

In this paper we study geometric aspects of dynamics generated by Young differential equations (YDE) driven by α -Hölder trajectories with α ∈ ( 1 / 2 , 1 ) . We present a number of properties and geometrical constructions in this context: Young Itô geometrical formula, horizontal lift in principal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2023-12, Vol.20 (6), Article 335
Hauptverfasser: Catuogno, Pedro, Lima, Lourival, Ruffino, Paulo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study geometric aspects of dynamics generated by Young differential equations (YDE) driven by α -Hölder trajectories with α ∈ ( 1 / 2 , 1 ) . We present a number of properties and geometrical constructions in this context: Young Itô geometrical formula, horizontal lift in principal fibre bundles, parallel transport, among others. Our main application here is a geometrical decomposition of flows generated by YDEs according to diffeomorphisms generated by complementary distributions (integrable or not). The proof of existence of this decomposition is based on an Itô-Wentzel type formula for Young integration along α -Hölder paths proved by Castrequini and Catuogno (Chaos Solitons Fractals, 2022).
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-023-02539-3