Legendre Superconvergent Degenerate Kernel and Nyström Methods for Nonlinear Integral Equations

We study polynomially based superconvergent collocation methods for the approximation of solutions to nonlinear integral equations. The superconvergent degenerate kernel method is chosen for the approximation of solutions of Hammerstein equations, while a superconvergent Nyström method is used to so...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2023-10, Vol.75 (5), p.663-681
Hauptverfasser: Allouch, C., Arrai, M., Bouda, H., Tahrichi, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study polynomially based superconvergent collocation methods for the approximation of solutions to nonlinear integral equations. The superconvergent degenerate kernel method is chosen for the approximation of solutions of Hammerstein equations, while a superconvergent Nyström method is used to solve Urysohn equations. By applying interpolatory projections based on the Legendre polynomials of degree ≤ n, we analyze the property of superconvergence of these methods and their iterated versions. The numerical data are presented to validate the theoretical results.
ISSN:0041-5995
1573-9376
DOI:10.1007/s11253-023-02222-6