Further Results on Autocorrelation of Vectorial Boolean Functions
In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $\sum_{u\in \mathbb{F}_2^n,v\in \mathbb{F}_2^m}\mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vector...
Gespeichert in:
Veröffentlicht in: | IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2023/10/01, Vol.E106.A(10), pp.1305-1310 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $\sum_{u\in \mathbb{F}_2^n,v\in \mathbb{F}_2^m}\mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vectorial bent functions. Further, three kinds of sum-of-squares indicators of vectorial Boolean functions are defined by autocorrelation function and the lower and upper bounds of the sum-of-squares indicators are derived. Finally, we study the sum-of-squares indicators with respect to several equivalence relations, and get the sum-of-squares indicator which have the best cryptographic properties. |
---|---|
ISSN: | 0916-8508 1745-1337 |
DOI: | 10.1587/transfun.2022EAP1096 |