Further Results on Autocorrelation of Vectorial Boolean Functions

In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $\sum_{u\in \mathbb{F}_2^n,v\in \mathbb{F}_2^m}\mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vector...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences Communications and Computer Sciences, 2023/10/01, Vol.E106.A(10), pp.1305-1310
Hauptverfasser: LI, Zeyao, JIANG, Niu, ZHUO, Zepeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the properties of the sum-of-squares indicator of vectorial Boolean functions. Firstly, we give the upper bound of $\sum_{u\in \mathbb{F}_2^n,v\in \mathbb{F}_2^m}\mathcal{W}_F^3(u,v)$. Secondly, based on the Walsh-Hadamard transform, we give a secondary construction of vectorial bent functions. Further, three kinds of sum-of-squares indicators of vectorial Boolean functions are defined by autocorrelation function and the lower and upper bounds of the sum-of-squares indicators are derived. Finally, we study the sum-of-squares indicators with respect to several equivalence relations, and get the sum-of-squares indicator which have the best cryptographic properties.
ISSN:0916-8508
1745-1337
DOI:10.1587/transfun.2022EAP1096