Shape‐Memory Effect Enabled by Ligand Substitution and CO2 Affinity in a Flexible SIFSIX Coordination Network
We report that linker ligand substitution involving just one atom induces a shape‐memory effect in a flexible coordination network. Specifically, whereas SIFSIX‐23‐Cu, [Cu(SiF6)(L)2]n, (L=1,4‐bis(1‐imidazolyl)benzene, SiF62−=SIFSIX) has been previously reported to exhibit reversible switching betwee...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2023-11, Vol.135 (47), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report that linker ligand substitution involving just one atom induces a shape‐memory effect in a flexible coordination network. Specifically, whereas SIFSIX‐23‐Cu, [Cu(SiF6)(L)2]n, (L=1,4‐bis(1‐imidazolyl)benzene, SiF62−=SIFSIX) has been previously reported to exhibit reversible switching between closed and open phases, the activated phase of SIFSIX‐23‐CuN, [Cu(SiF6)(LN)2]n (LN=2,5‐bis(1‐imidazolyl)pyridine), transformed to a kinetically stable porous phase with strong affinity for CO2. As‐synthesized SIFSIX‐23‐CuN, α, transformed to less open, γ, and closed, β, phases during activation. β did not adsorb N2 (77 K), rather it reverted to α induced by CO2 at 195, 273 and 298 K. CO2 desorption resulted in α′, a shape‐memory phase which subsequently exhibited type‐I isotherms for N2 (77 K) and CO2 as well as strong performance for separation of CO2/N2 (15/85) at 298 K and 1 bar driven by strong binding (Qst=45–51 kJ/mol) and excellent CO2/N2 selectivity (up to 700). Interestingly, α′ reverted to β after re‐solvation/desolvation. Molecular simulations and density functional theory (DFT) calculations provide insight into the properties of SIFSIX‐23‐CuN.
Linker engineering of a flexible SiF62− (SIFSIX) pillared network via single atom substitution profoundly changes the sorption behavior and affords a kinetically stable shape‐memory material. The ‘memorized’ open phase efficiently purifies a CO2/N2 (15/85) mixture in a manner which would be infeasible for the nonporous variant. |
---|---|
ISSN: | 0044-8249 1521-3757 |
DOI: | 10.1002/ange.202309985 |